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Symbol reference
W.l.o.g.: Without loss of generality.

A.e.: Almost everywhere.

z∗: Complex conjugate of z ∈ C.

R∗: Extended real axis, R∗ := R ∪ {±∞}.

C∗: Extended complex plane, C∗ := {x+ iy : x, y ∈ R∗}.

R+ := [0,∞).

Id: Identity map.

(G, ◦, e): Group or monoid with neutral element e.

(τg)g∈G: G-semi-flow or G-flow for some (semi-)group G, see 2.0.5.

τG(x): Trajectory of point x under G-semi-flow (τg)g∈G, τ
G(x) := {τg(x)}g∈G.

τG(A): Trajectory of set A under G-semi-flow (τg)g∈G, τ
G(A) :=

⋃
g∈G τ

g(A).

Π: Natural projection on phase-space, Π(q,p) := q.

Π
(
τGx

)
: Spatial trajectory of x under the G-semi-flow (τg)g∈G.

d(·, ·): Metric.

〈·, ·〉: Scalar product.

PV : Projector on closed subspace V .

f+: Positive part of a function f , f+ := max{f, 0}.

f−: Negative part of a function f , f− := max{−f, 0}.

(M,M, µ): Measure space with σ-algebraM⊂P(M) and measure µ.

σ(A): Smallest σ-algebra containing the family of sets A.

δ(A): Smallest Dynkin-system containing the family of sets A.

M∩A: Induced σ-algebra on set A ∈M,M∩A := {B ∩A : B ∈M}.

µ⊗ ν: Product measure of µ and ν.

M⊗N : Product σ-algebra ofM, N : M⊗N := σ ({A×B : A ∈M, B ∈ N}).
dµ
dν : Density of measure µ with regard to measure ν.

ν � µ: Measure ν is absolutely continuous to µ, that is, µ(A) = 0 implies ν(A) = 0.

µτ : Image measure of map τ under measure µ, µτ (A) := µ
(
τ−1(A)

)
.

µ(f): For measure µ and measurable function f : µ(f) :=
∫
f dµ.

〈f〉µ: Same as µ(f), but mainly for probability-measures µ.

δE: Dirac measure at point E : δE(A) = 1 ⇔ E ∈ A.

1A: Indicator function for set A, that is, 1A(x) = 1 for x ∈ A and 1A(x) = 0 for x /∈ A.

Ac: Complement for some set A ∈M , Ac := M \A.

A4B: Symmetrical difference between sets A,B : A4B := (A ∪B) \ (A ∩B).

cl(A): Closure of set A.
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V ⊥: Orthogonal space to linear subspace V .

p a.e.: Almost everywhere, µ ({x : ¬p(x)}) = 0.

p for a.e. x ∈ A: There exists a set Ã ⊂ A, Ã = A(mod0) such that p holds on Ã.

{f = g} := {x : f(x) = g(x)}.

O(M): Topology (open sets) of topological space M .

O(M) ∩A: Induced topology on subset A ⊂M of a topological space M , O(M) ∩A := {B ∩A : B ∈ O(M)}.

B(M): σ-algebra of Borel sets of topological space M , B := σ(O(M)).

A = B(mod0): 1A = 1B almost everywhere, that is, µ(A4B) = 0.

C(M): Linear space of continuous complex functions on M .

‖·‖∞: Supremum-norm, ‖f‖∞ := sup {f(x) : x ∈M}.

‖·‖p: Lp-norm.

Lp(M,M, µ): Linear space of Lp-integrable functions on (M,M, µ).

Boε (x): Open ε-ball, Boε (x) := {y : d(x, y) < ε}.

Bnε : Closed ε-ball in Rn.

Sn: n-dimensional unit-circle, that is, Sn = ∂Bn+1
1 .

S1: 1-dimensional unit-circle, S1 ' R/Z.

Tn: n-dimensional torus, Tn = S1 × · · · × S1 ' Rn/Zn.

λTn : Standard Lebesgue measure on torus Tn.

λRn : Lebesgue measure in Rn.

λx: Lebesgue measure on some manifold, induced by coordinates x.

dTn(·, ·): Standard metric on torus Tn, see 4.2.1.

ω(·, ·): Symplectic form.

TqM : Tangent-space of manifold M at point q.

T ∗qM : Co-tangent-space of manifold M at point q.

TM : Tangential bundle of manifold M .

T ∗M : Co-tangential bundle of manifold M .

(M, g): Riemannian manifold with metric g.

(M, g, J): Riemannian manifold with the isomorphism J : TM → T ∗M , defined by JX := g(X, ·).

(M, g, g̃): Riemannian manifold with inverse metric g̃, that is, g̃(a, b) = g(J−1a, J−1b) for a, b ∈ T ∗M .

VM : Volume-form on M induced by Riemann-metric g.

V ∂M : Volume form on ∂M induced by Riemann-metric g.

volVM (A): Volume of set A under volume-form VM : volVM (A) :=
∫
A

VM .

∂i: Coordinate vector field on manifold.

(M,ω): Symplectic manifold with symplectic form ω.

(M,dϑ ∧ ds): Symplectic manifold with symplectic coordinates ϑ, s.
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H: Hamilton-function.

XH : Hamilton-vector field, defined by ω(XH , ·) = dH.

ϕtX : (Semi-)flow for some vector field X.

RX : Poincaré return-map for vektor-field X, see 3.1.6.

Anf : Iterated average of some function f under some map τ , Anf :=
∑n−1
k=0 f ◦ τk.

MA
n f := max {A1f, ..., Anf}.

Snf := n ·Anf .

MS
n f := max {S1f, .., Snf}.

M ' N : M diffeomorphic to N .
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1 Abstract
The theory of dynamical systems has in the past 60 years evolved from an empirical, observation-based science,
into an abstract, powerful mathematical tool to describe problems ranging from physics, biology up to number
and information theory. Particularly in physics, dynamical systems are typically described by some set of
differential equations, which if solved, describe the evolution of the system up to any time in the future and not
seldomly in the past.

Questions arise about, not only the explicit solutions, but also holist aspects like distribution and denseness
of trajectories in phase space, existence of periodic behavior and limiting of solutions to certain time-invariant
state-sets. The mathematical framework built around these questions is coined ergodic theory, and incorporates
disciplines from all branches of mathematics, including group theory, measure theory and differential geometry.

This paper is meant as an introduction to current developments in this field and an elaboration on deeper
implications for Hamiltonian systems. It begins with an introduction and characterization of key-concepts like
ergodicity, strict-ergodicity, mixing and relaxing systems and the existence of ergodic equilibrium measures. We
proceed with elaborating on certain concepts emerging in systems described on smooth manifolds (e.g. sym-
plectic), restricting the analysis mainly to conservative Hamiltonian systems. Finally, an example application
of the developed concepts is given for billiards, a popular model attracting the attention of mathematicians as
well as physicists.
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2 Introduction
In the theory of dynamical systems, a system’s state is typically abstracted as a point in phase space[8], in
general some topological, and not seldomly, measurable space. Its evolution is described by flows, which,
sometimes depending on some free parameter (i.e. time), act upon the phase-space’s states, moving them as
time passes[17]. In case of autonomous systems, i.e. described by some time-invariant law, this flow is abstracted
as a group action, that is, a family of mappings within the phase-pace with group-like properties[7].

Dynamical systems arising in nature, usually come with the burden of uncertainty. Though the laws govern-
ing a system might be explicitly given, its initial state is often fully or partially hidden from observers, either
due to lack of means to identify it, or simply due to its sheer complexity and huge number of parameters needed
to describe it. A so called probability distribution is thus additionally introduced to the phase space, expressing
in a sense the information, or better, the lack of it, given for the system’s state. As the system naturally evolves,
this probability distribution for the system’s states might change, following the flow of the system within the
phase space, at all times expressing what information we may have about the system’s state. This evolution
of the probability distribution is naturally given by the image-measure, induced by the flow-action within the
phase-space.[8]

Equilibrium distributions are special distributions, characterized by their invariance to the system’s flow.
As time passes, they remain constant, thus resulting in all expectations one might have about the system be-
ing constant with time. It is with respect to these distributions, that questions like ergodicity andmixing arise[3].

We shall begin with a brief introduction to the terminology and basic definitions to be used in the rest of
the article.

2.0.1 Definition: Measure spaces

Let M 6= ∅ be some set andM⊂P(M) some σ-algebra1 on M . Then (M,M) is called a measurable space.
If further µ : M → [0,∞] is a measure2 on (M,M), we call (M,M, µ) a measure space. We call µ finite, if
µ(M) <∞ and σ-finite, if there exists a countable partition (An)n ⊂M of M with µ(An) <∞.
We call a map f : M → N between measurable spaces (M,M), (N,N ) measurable, if for B ∈ N it follows
f−1(B) ∈M.
We say A ⊂M is measurable if A ∈M and call A a nullset, if µ(A) = 0.
For two measurable sets A,B ∈M we define:

A = B(mod0) :⇔ µ(A4B) = 0

and say A is µ-almost equal to B.
For two measurable functions f, g on M we define:

f = g(mod0) :⇔ µ ({x : f(x) 6= g(x)}) = 0

and say f is µ-almost equal to g.
We say (M,M) is topological, if M is a topological space andM contains the topology O(M) of M . By B(M)
we denote the Borel-σ-algebra of M . See more in [6].

2.0.2 Definition: Invariant measure

Let (M,M, µ) be a measure space and τ : M → M measurable. Then µ is called τ -invariant if the image-
measure

µτ (A) := µ(τ−1(A))

1A family of setsM⊂P(M) is called a σ-algebra if:
1. M ∈M
2. From A ∈M follows Ac ∈M
3. For any sequence (An) ⊂M one has

⋃
n∈N

An ∈M

2A non-negative function µ : M → M on a σ-algebra M is called a measure, if µ(∅) = 0 and for disjoint An ∈ M follows

µ

( ⋃
n∈N

An

)
=
∞∑
n=1

µ(An)

2



is equal to µ. The map τ is called measure preserving, or an endomorphism on (M,M, µ).
Note: For bijective τ : M →M , τ -invariance of µ is equivalent to τ−1-invariance.

2.0.3 Definition: Automorphism

Let (M,M, µ) be a measure space and τ : M →M . Then τ is called an automorphism, if:

• it is invertible,

• both τ and τ−1 are measurable,

• ∀ A ∈M : µ(τ(A)) = µ(A).

Note that all automorphisms are measure preserving.[1]

2.0.4 Definition: τ-induced operator

Let M be an arbitrary set and τ : M → M . Then the operator T on the space of (real or complex) functions
on M defined as

Tf := f ◦ τ
is called the τ -induced operator.[1]

Note: If τ : M → M is measure preserving on the measure space (M,M, µ), then by lemma A.3.2 the
operator T : Lp → Lp is an isometry3 for any 0 < p < ∞. If τ is additionally bijective, then T : L2 → L2 is
unitary.

2.0.5 Definition: G-semiflow

Let (G, ◦) be a monoid4 and (τg)g∈G a family of maps on the set M with τg ◦ τh = τg◦h for any g, h ∈ G and
τ0 = Id. Then (τg)g∈G is called a G-semi-flow.
Note:

• ({τg}g∈G , ◦) is a monoid.

• If G is abelian, then {τg} is abelian.

• If G is a group, then ({τg} , ◦) is a group, all τg are bijections and τ−g = (τg)−1. We then call (τg)g∈G a
G-flow.

Further conventions:

• In the context of measurable spaces (M,M) and (G,G) we further demand that τg : G ×M → M are
measurable in (G×M,G⊗M), as well as measurability of any set of the form {τgA}g∈G′ , G′ ∈ G, A ∈M.

• A G-semi-flow is measure preserving if all its elements are measure preserving.

• The set of points {τg(x)}g∈G for some x ∈M is called the trajectory of x along the G-semi-flow.

• If G is an ordered monoid5, we call (τg) an ordered G-(semi-)flow. We call {τgx}g≥0 the future (trajectory)
of x and {τgx}0≥g the history (trajectory) of x ∈M .

• If τg is only defined for g ∈ A ( G, we call (τg)g∈A a partial G-semi-flow. In that case, the rule
τg ◦ τh = τg◦h shall hold wherever it makes sense.

• If G = R+ or G = R we sometimes call (τg) a time-(semi)-flow.
3An operator T : V →W between two normed spaces (V, ‖·‖V ) and (W, ‖·‖W ) is called an isometry :⇔ ‖Tv‖W = ‖v‖V ∀ v ∈ V
4Semi-group with neutral element.
5A monoid (G, ◦) is called ordered, if it is equipped with a translation invariant order ≥, that is, for a, b, g ∈ G and a ≤ b follows

a+ g ≤ b+ g.
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• If G = N or G = Z and (τn) is generated by iterating over some map τ : M → M , we call (τg) an
iteration-(semi)-flow.

• For vector fields X on some smooth manifold M , we write (ϕtX)t for the induced flow.

2.0.6 Definition: Invariant functions and sets

Let M be an arbitrary set and τ : M → M . A function f on M is τ -invariant, if f ◦ τ = f . A set A ⊂ M is
called τ -invariant, if 1A is τ -invariant, that is, τ−1(A) = A.
Now let {τα}α∈A be a set of maps τα : M →M . A function f (set A) is {τα}-invariant, if for any α ∈ A it is
τα-invariant.
Note: Any τ -invariant function f (set), where τ bijective, is also τ−1-invariant.

Figure 1: On invariant sets of flows. The set A above is(
τ t
)
-invariant, meaning that every trajectory is either com-

pletely included in or completely excluded from A.

2.0.7 Definition: Metrically isomorphic systems

Let (M,M, µ, (τg)g∈G) and (N,N , ν, (λg)g∈G) be measure spaces with G-semi-flows and ϕ : M → N a measure
preserving (ν = µϕ) bijection that commutes with the semi-flows, that is,

λg = ϕ ◦ τg ◦ ϕ−1 , g ∈ G .

Then the systems are called metrically isomorphic (by ϕ).[3]

Note:

• (τg) is measure preserving ⇔ (λg) is measure preserving, since νλ = (µτ )ϕ.

• A function f on M is {τg}-invariant ⇔ f ◦ ϕ−1 is {λg}-invariant, since(
f ◦ ϕ−1

)
◦ λg = f ◦ ϕ−1 ◦ ϕ ◦ τg ◦ ϕ−1 = f ◦ τg ◦ ϕ−1 .
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3 Ergodic concepts

3.1 Recurrence
One of the first concepts studied in dynamical systems and later in ergodic theory, is that of recurrence, a
question originating in celestial mechanics and the study of periodic orbits. One of the first milestones is the
recurrence theorem of Poincaré about measure preserving maps, to be discussed below. Its implications are
intriguing as well as fundamental, and at first presented a contradiction to the irreversibility of many physical
processes. See more in [28].

3.1.1 Poincaré recurrence theorem

Let (M,M, µ) be a finite measure space and τ : M → M measure preserving. Then for every set A ∈ M,
almost all points x ∈ A return through the trajectory {τn(x)}n∈N0

infinitely often to A. In other words:

µ ({x ∈ A | ∃ nx ∈ N : ∀ n ≥ nx : τnx /∈ A}) = 0 ∀ A ∈M . (3.1.1.1)

Proof: We shall adopt the proof found in [26]. Let

An :=
⋃
k≥n

(τk)−1(A)︷ ︸︸ ︷
τ−k(A) , n ∈ N0

be the set of all points that come to A after at least n iterations. Then Am ⊂ An for m ≥ n and τ−n(A0) = An,
which implies

µ(A0)
µτ=µ

= µ
(
τ−n(A0)

)
= µ(An) . (3.1.1.2)

Therefore

µ

[
A \

( ⋂
n∈N0

An

)]
= µ

[ ⋃
n∈N0

(A \An)

]
≤
∞∑
n=0

µ(A \An︸ ︷︷ ︸
⊂A0\An
since
A⊂A0

) ≤
∞∑
n=0

µ(A0 \An)︸ ︷︷ ︸
µ(A0)−µ(An)

since
An⊂A0

and µ finite

(3.1.1.2)
= 0 .

3.1.2 Corollary: Trajectories of automorphisms

Let (M,M, µ) be a finite measure space and τ : M →M an automorphism. Then the history

τ−N0(A) :=
⋃
n∈N0

τ−n(A)

is almost equal to the future
τN0(A) :=

⋃
n∈N0

τn(A)

of any set A ∈M.

Proof: Due to symmetry, it suffices to show only one of the two inclusions. Set K := τN0(A) \ τ−N0(A) and
suppose µ(K) > 0. Then for some n ≥ 1:

µ

[
τn(A) \ τ−N0(A)︸ ︷︷ ︸

Kn

]
> 0

since otherwise K would be a countable union of null-sets and thus a null-set. By Poincaré we know that a.e.
point x ∈ Kn (since µ(Kn) > 0, at least one) returns to Kn infinitely often, e.g at some time m > n. But then
x also visits A, since τm−n(x) ∈ A. This is a contradiction to the construction of Kn!
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3.1.3 Corollary: Average return time

Let (M,M, µ) be a finite measure space and τ : M →M measure preserving. For any set A ∈M let

RA(x) := inf ({n ∈ N : τn(x) ∈ A} ∪ {∞})

be the next visit time of x in A. Then ∫
A

RA dµ = µ

[ ⋃
n∈N0

(τn)−1(A)︸ ︷︷ ︸
τ−N0 (A)

]
.

See more in [27].

Example: In the special case of a bijection τ the history τ−N0(A) is almost equal to the future τN0(A)
(corollary 3.1.2). Thus the average next visit time of A to A is the ratio between the measure of its future to
its own.

Figure 2: Trajectory of set A under measure preserving
flow. Average return time is ratio between future measure
and own.

Proof: Set G0 := A and
Gk := τ−1(Gk−1) ∩Ac , Rk := τ−1(Gk−1) ∩A

with Gk the points visiting A for the first time k and Rk the points of A returning to A for the first time k.
Then

µ(Gk)
µτ=µ

= µ
[
τ−1(Gk)

]
= µ[τ−1(Gk) ∩Ac︸ ︷︷ ︸

Gk+1

] + µ[τ−1(Gk) ∩A︸ ︷︷ ︸
Rk+1

] = µ(Gk+1) + µ(Rk+1) ,

which implies

µ(Gn) =

∞∑
k=n+1

µ(Rk) + lim
k→∞

µ(Gk) .

By Poincaré a.e. point of A returns to A at some time, thus

A =

( ⊎
k∈N
Rk
)

(mod0) ⇒ µ(A) =

∞∑
k=1

µ(Rk) .
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By setting n = 0 we get
lim
k→∞

µ(Ak) = 0 ,

hence

µ
[
τ−N0(A)

]
=

∞∑
n=0

µ(Gn) =

∞∑
n=0

∞∑
k=n+1

µ(Rk) =

∞∑
k=1

k · µ(Rk) =

∫
A

RA dµ .

3.1.4 Corollary: Approximating trajectories

Let (M,M, µ) be a second-countable6 topological, finite measure space so thatM contains the topology of M
and τ : M →M measure preserving. Then for almost all x ∈M , the trajectory {τnx}n∈N comes arbitrary close
to x. In other words, for almost all x ∈M and any open neighborhood V of x: τnx ∈ V for some n ∈ N.

Example: Any compact subspace of R2n (x1, .., x2n symplectic), equipped with the Lebesgue measure, and
Hamilton-flow τ := ϕt0XH .

Proof: Let U = {U1, U2, ..} be a countable base of the topological space M . For any set A ∈M let

Ã := {x ∈ A | τnx /∈ A ∀ n ∈ N}

be the points in A that never return to A. From the recurrence theorem we know µ(Ã) = 0. Thus

µ

(⋃
i∈N

Ũi

)
≤
∞∑
i=1

µ
(
Ũ
)

= 0 .

But for each
x ∈M \

⋃
i∈N

Ũi

and each open neighborhood ∅ 6= V of x there exists an Ui︸︷︷︸
3x

⊂ V (since V =
⋃
i∈I

Ui for some I ⊂ N) and by

construction
τnx ∈ Ui ⊂ V

for some n ∈ N.

3.1.5 The trapped gas

Consider N gas-particles trapped within a bounded volume B ⊂ Rd, described by the Hamiltonian

H(p,q) = U(q) +
‖p‖2
2m

in symplectic coordinates p,q, so that U is bounded below in B. The measure λq,p described by the volume-form

V := dq1 ∧ . . . dqn ∧ dp1 ∧ · · · ∧ dpN

is strict positive (with regard to the topology induced by open sets in RdN ) and preserved by the Hamilton-flow(
ϕtXH

)
(see section 4). Furthermore, any set

M := {Hlow ≤ H(q,p) ≤ Hhigh}

is due to the structure of H compact, which implies the finiteness of the Lebesgue-measure λq,p on the system’s
manifold M . Note that actually ϕtXH : M →M since ϕtXH conserves H.

6There exists a countable family U = {U1, U2, ..} of open sets such that any open set V in M is a union of elements of U .
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Now consider the system in a certain state 1 (see fig. 3). By corollary 3.1.4 the system will (almost surely)
eventually come arbitrarily close (state 3) to its initial configuration.

Figure 3: Gas trapped within a bounded volume, at 3 dif-
ferent times.

Note that the corollary does not say much about the time needed for this process to happen. Nonetheless,
corollary 3.1.3 allows us to estimate the average return time 〈RA〉A of configurations from and to a certain
start-set A. Consider the case of a two-part box of volume B filled with N gas particles, initially located at one
of two halves B1,2 of the box.

Figure 4: Gas initially located at one of the two halves of
a box.

Observing the system only on discrete times {n · t0}n∈N0
, t0 > 0, we ask for the average observations count

needed for the whole particles to be observed in the initial half again, taken over all possible configurations
starting in that half. For simplicity we assume the gas to be ideal, that is, the potential to be λq-almost
everywhere zero and on some null-set ∞ (the collision-set). With

λq,p(A) =λq,p
({

q ∈ BN1 , Hlow ≤ H(q,p) ≤ Hhigh

})

= λq,p
({

q ∈ BN1 ,mHlow ≤ ‖p‖ ≤ mHhigh

})
= BN1 ·

(mπ)
dN
2

Γ
(
1 + dN

2

) · [H dN
2

high −H
dN
2

low

]
︸ ︷︷ ︸

CN

,

λq,p(M) =(B1 +B2)N · CN
we get the upper bound:

〈RA〉A =
1

λq,p(A)

∫
A

RA dλq,p ≤
[
B1 +B2

B1

]N
= 2N .

3.1.6 The Poincaré map

Let M be a n-dimensional C∞ manifold and (ϕtX)t∈R the flow induced by the C1 vector field X on M . Let
p ∈ M be a periodic point of (ϕtX), that is, ϕt0X(p) = p for some minimal t0 > 0. Finally, let Xp 6= 0 and N be
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a (n− 1)-dimensional sub-manifold containing p and transversal to X in some open neighborhood of p.
Then there exists some local homeomorphism RX : Up ⊂ N → N on an open neighborhood Up of p such

that RX(x) is the first intersection of the future trajectory {ϕtXx}t>0 with N . This map is called Poincaré
(return) map induced by (ϕtX) on Up.

Figure 5: Poincaré recurrence map for 2D-submanifold N
in R3.

Interpretation: Using the Poincaré map it is possible to reduce the study of continuous-time, smooth dy-
namical systems (M, (ϕtX)t∈R) to discrete-time ones on lower-dimensional manifolds (N, (RnX)n∈N0

). Though
the explicit calculation of the return map is in most cases impossible, observed properties of this map can deliver
great insights into the structure of the original system (see section 5.1.4). See more in [2].

Proof: We shall assume {ϕtX} to be at least diffeomorphisms. Choose coordinates xi around p such that
x1
∣∣
N

= 0, ∂1 = X and x2, .., xn
∣∣
N

are coordinates in N . This is always possible since X is transversal to N .
Then by construction

ϕtX(0, x2, .., xn) = (t, x2, .., xn)

at least in some open neighborhood U0 × Up︸ ︷︷ ︸
3(0,p)

⊂ R×N . Thus

ϕt0+t
X (0, x2, .., xn)︸ ︷︷ ︸
Φ(t0+t,x2,..,xn)

= ϕt0X(t, x2, .., xn)︸ ︷︷ ︸
diffeomorphism
in (t,x2,..,xn)

,

hence

Φ :

open︷ ︸︸ ︷
(Ut0 × Up)︸ ︷︷ ︸
3(t0,p)

⊂ (R×N)→M

is a diffeomorphism to its image Ũp 3 p. Note that Φ essentially maps every point y ∈ Ũp to some point x ∈ N
and time tx such that ϕtxX (x) = y.

Define the projection Π : R×N → N by

Π(t, x2, .., xn) = (x2, .., xn)

and consider the map T := Π ◦Φ−1
∣∣
Ũp∩N

. We shall show that T : (Ũp ∩N)→ N is (locally) a diffeomorphism.
Continuity (and differentiability) is given, as Π and Φ−1 are continuous and differentiable. By the implicit
function theorem, it suffices to show that dT maps (n − 1) linear independent vectors to (n − 1) linear inde-
pendent vectors. Consider the vectors ∂2, .., ∂n ∈ TpN . Since d(t0,p)Φ(∂1) = ∂1 we know dpΦ

−1(∂1) = ∂1, thus
dpΦ

−1(∂i), i = 2, .., n are such that, their projection dΠ(dpΦ
−1∂i) on TpN is a basis in TpN . Otherwise, with

dpΦ
−1(∂i) =: aji∂j , there would exist some 0 6= (k2, .., kn) ∈ Rn−1 such that

n∑
i=2

ki ·

dΠ dpΦ−1(∂i)︷ ︸︸ ︷
n∑
j=2

aji∂j = 0
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and thus for k1 := −∑n
i=2 k

ia1
i :

k1 · dpΦ−1(∂1) +

n∑
i=2

ki · dpΦ−1(∂i) = k1 · ∂1 +

n∑
i=2

kia1
i ∂1︸ ︷︷ ︸

0

+

n∑
i=2

ki ·
n∑
j=2

aji∂j︸ ︷︷ ︸
0

= 0 ,

which is a contradiction to the fact that dpΦ−1 maps linear independent vectors to linear independent ones.
Thus T is at least a local homeomorphism, mapping points y ∈ Ũp ∩ N to a previous intersection point

x ∈ N . As by assumption T (p) is the most recent previous intersection of p with N , continuity of T implies the
same at least for some open neighborhood of p. Setting RX := T−1 yields what was to be shown.

3.2 Birkhoff’s ergodic theorem
One key question arising in the study of dynamical systems with physical origin, is the concept of average
values of functions defined on the phase-space. One distinguishes between two kinds of averages: time average,
corresponding to collections of values taken by iterating along the flow, and phase-averages, taken through some
probability measure imposed on the phase space. While the later is well defined, the existence of the former is
in no way trivial and was only established in the 1930s by David Birkhoff.[31] The following section sketches
the rather lengthy proof (found in appendix A.1) of this important theorem and outlines some immediate
consequences. For more on this theorem see [1],[3],[4],[17].

3.2.1 Maximal ergodic theorem

Let (M,M, µ) be a measure space and T : L1(M,M, µ) → L1(M,M, µ) a positive7. contraction8. For any
f ∈ L1(M,M, µ) let

Snf :=

n−1∑
k=0

T kf , Anf :=
Snf

n
,

MS
n f := max {S1f, .., Snf} , MA

n f := max {A1f, .., Anf} ,

Pnf :=
{
MS
n f ≥ 0

}︸ ︷︷ ︸
{MA

n f≥0}

, P∞f :=
⋃
n∈N

Pnf .

Then ∫
Pnf

fdµ ≥ 0 ,

∫
P∞f

f dµ = 0 .

Proof: See appendix A.1.1.

3.2.2 Corollary: Maximal ergodic inequality

Let (M,M, µ) be a σ-finite measure space9 and T : L1(M,M, µ)→ L1(M,M, µ) the operator induced by the
measure preserving map τ : M →M . Then the inequality

µ
({
MA
n f ≥ α

})
≤ ‖f‖1

α
(3.2.2.1)

7An operator T : V →W between vector spaces with partial order, is positive (T ≥ 0) :⇔

T {v ∈ V : v ≥ 0} ⊂ {w ∈W : w ≥ 0} .

8A bounded, linear operator T : V → V in the normed vector space (V, ‖·‖) is called a contraction :⇔ ‖T‖ ≤ 1 .
9A measure space (M,M, µ) is σ-finite :⇔ ∃ U1, U2, .. ∈M :

⋃
n∈N

Un = M ∧ µ(Un) <∞ .
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holds for any real valued f ∈ L1 and α > 0.
Note: For T = Id this reduces to the known Markov-inequality.

Proof: See appendix A.1.2.

3.2.3 Birkhoff-Khinchin-Ergodic Theorem

Let (M,M, µ) be a finite measure space, τ : M → M measure preserving and f ∈ L1 (real or complex). Then
for almost all x ∈M the averages

Anf(x) :=
1

n

n−1∑
k=0

f ◦ τk(x)

converge pointwise to some τ -invariant f ∈ L1 with
∥∥f∥∥

1
≤ ‖f‖1. For each τ -invariant A ∈M:∫

A

f dµ =

∫
A

f dµ .

Proof: See appendix A.1.3.

3.2.4 Birkhoffs ergodic theorem for time-semi-flows

Let (M,M, µ) be a finite measure space, (τ t) a measure preserving R+-semi-flow or R-flow on M and f ∈ L1

(real or complex). Then for almost all x ∈M the average

1

2T

T∫
−T

f
(
τ tx
)
dt

in case of a flow and
1

T

T∫
0

f
(
τ tx
)
dt

in case of a semi-flow, converges for T → ∞ to some (τ t)-invariant f ∈ L1 with
∥∥f∥∥

1
≤ ‖f‖1. For each

(τ t)-invariant A ∈M: ∫
A

f dµ =

∫
A

f dµ .

Proof: See [1] and [2].

3.2.5 Corollary: Mean sojourn time

Let (M,M, µ) be a measure space, τ : M → M measure preserving or (τ t)t≥0 a measure preserving R+-semi-
flow. For a set A ∈M define the sojourn time SA(x) of a point x ∈M as

SA(x) := lim
n→∞

1

n

n−1∑
k=0

1A(τnx)

(where possible) for τ , and

SA(x) := lim
T→∞

1

T

T∫
0

1A(τ tx) dt

for the semi-flow (τ t). Then SA(x) is well-defined a.e., is (mod0) equal to some semi-flow - invariant function
SA : M → [0,∞] and ∫

M

SA dµ = µ(A) .
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Interpretation: Realizing that (in the case of τ)

SA(x) = lim
n→∞

1

n
# {0 ≤ m < n : τmx ∈ A}

is really the average frequency of visits of the future trajectory {τnx}n∈N0
of x in A, this rather trivial conse-

quence of the Birkhoff theorem justifies the more or less intuitive notion that the expected average residence
time of a trajectory within A is proportional to its measure.

Figure 6: On the definition of the sojourn time. Red
trajectory-section accounts for sojourn time of x in A.

Proof: By the Birkhoff ergodic theorem the above limits exist a.e. and there exists some semi-flow-invariant
S̃A : M → [0,∞) such that S̃A = SA(mod0). Furthermore∫

M

SAdµ =

∫
M

S̃A dµ =

∫
M

1A dµ = µ(A) ,

which proves what was to be shown.

3.2.6 Von Neumann mean ergodic theorem

Let T be a contraction in a Hilbert-Space (H, 〈·, ·〉H) and PT the projector on the 1-Eigenspace of T :

HT := {f ∈ H : Tf = f} .

Then the averages

Anf :=
1

n

n−1∑
k=0

T kf

converge (in norm ‖·‖H) to PT f for any f ∈ H.

Note the connection to Birkhoffs ergodic theorem: Setting H = L2(M,M, µ), T f := f ◦ τ (since τ is measure
preserving T is an isometry) yields the L2-convergence of the averages Anf to a τ -invariant PT f =: f with∥∥f∥∥

2
≤ ‖f‖2. The average f thus contains only the τ -invariant parts of f .

Proof: We shall adopt the proof found in [1].
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• Let K be a contraction in H. Then g = Kg ⇔ g = K∗g for any g ∈ H.
Proof:

〈g,Kg〉 = ‖g‖2 ⇒ 〈g,Kg〉 ∈ R ⇒ 〈g,Kg〉 = 〈Kg, g〉

⇒ ‖Kg − g‖2 = ‖Kg‖2 + ‖g‖2 − 2 〈g,Kg〉
‖K‖≤1

≤ 2 ‖g‖2 − 2 ‖g‖2 = 0

⇒ g = Kg

Thus
g = Kg ⇔ ‖g‖2 = 〈g,Kg〉 = 〈K∗g, g〉 ⇔ g = K∗g

• Let K be a family of contractions in H and

HK :=
⋂
K∈K

HK = {f ∈ H : Kf = f ∀ K ∈ K} .

Then
H⊥K = cl span {Kh− h : h ∈ H, K ∈ K}︸ ︷︷ ︸

N

.

Proof: We write

g ⊥ N ⇔ 〈g, (K − Id)h〉 = 0 ∀ h ∈ H, K ∈ K

⇔ 〈K∗g − g, h〉 = 0 ∀ h ∈ H, K ∈ K

⇔ K∗g = g ∀ K ∈ K ⇔ Kg = g ∀ K ∈ K

⇔ g ∈ HK

and get N⊥ = HK. Note that HK is closed since all K ∈ K are bound and thus continuous, which implies

H⊥K = (N⊥)⊥ = cl(N) .

• Now let f ∈ (T − Id)H︸ ︷︷ ︸
N

, that is, f = (T − Id)h for some h ∈ H. Then

‖Anf‖ =
1

n

∥∥Th− h+ T 2h− Th+ · · ·+ Tnh− Tn−1h
∥∥ =

1

n
‖Tnh− h‖

‖T‖≤1

≤ 2

n
‖h‖ n→∞−→ 0 .

For f ∈ clN , that is, f = lim
k→∞

fk, fk = (T − Id)hk:

lim sup
n→∞

≤‖f‖︷ ︸︸ ︷
‖Anf‖ = lim sup

n→∞
lim
k→∞

‖Anfk‖ ≤ lim sup
n→∞

2

n
sup
k
{‖hk‖} = 0 .

Let now f ∈ H. Since H = clHK︸ ︷︷ ︸
HK

⊕H⊥K we can split f =

∈HK︷︸︸︷
fHK +

∈H⊥K︷︸︸︷
fH⊥K and get

Anf = AnfHK︸ ︷︷ ︸
fHK

+AnfH⊥K
H⊥K=clN

= fHK +AnfclN
n→∞−→
‖·‖H

fHK ,

with fHK = PT f .
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3.3 Ergodicity
While Birkhoff’s mean ergodic theorem secured the existence of time means along trajectories, it did not answer
the serious question initially raised by Boltzmann’s work on the equivalence of phase-averages and time-averages
in dynamical systems. The importance of such a connection can be understood, by considering the fact that,
typical studies of certain processes are conducted through the observation of one or just a few copies of the
system, that is, along just a few trajectories through the phase-space (see also [8]). Hence, time averaging is
the tool usually available to experimentalists, while the development and refinement of theoretical models often
requires knowledge of certain phase averages, ideally the underlying probability distribution.

It turns out that these two concepts are connected through a new qualitative trait, characterizing certain dy-
namical systems: Ergodicity. We shall in the following section address this important idea with its implications,
and attempt to develop a framework of sufficient conditions for ergodicity.

3.3.1 Definition: Ergodic semi-flows

Let (M,M, µ) be a measure space with a measure preserving family of maps {τg}g∈G. If every {τg}-invariant
set A ∈ M has the property µ(A) = 0 or µ(Ac) = 0, then {τg} is called ergodic and (in case of a G-semi-flow)
(M,M, µ, (τg)) an ergodic system.[3]

3.3.2 Lemma about ergodic semi-flows

Let (M,M, µ) be a measure space and (τg)g∈G a G-semi-flow of bijections. Then (τg)g∈G is ergodic ⇔{
τg, (τg)−1

}
g∈G is ergodic.

Example: The ergodicity of an R-flow (τ t)t∈R is equivalent to the ergodicity of (τ t)t≥0.

Proof: Note that measure invariance of τg is equivalent to measure invariance of (τg)−1. Thus, any {τg}-
invariant set A ∈ M, is

{
τg, (τg)−1

}
-invariant as well. Obviously, the converse is also true. But this implies

what was to be shown.

3.3.3 Theorem: Invariant functions and ergodic semi-flows

Let (M,M, µ) be a measure space with a measure preserving G-semi-flow (τg). Then the following statements
are equivalent:

1. (τg) is ergodic.

2. Any measurable, (τg)-invariant function f : M → C∗ is constant almost everywhere.

3. Any bounded, measurable, (τg)-invariant function f : M → R∗ is constant almost everywhere.

4. In case of a finite measure space, and some arbitrary 0 < p <∞: Every bounded, measurable, (τg)-invariant,
Lp-integrable function f : M → R is constant a.e.

Proof: We shall elaborate on the proof outlined in [3].

1→ 2: Let f be flow-invariant and w.l.o.g. real. Then the set {f > c} is flow invariant for any c ∈ R, thus
µ({f > c}) = 0 or µ({f ≤ c}) = 0. W.l.o.g let µ({f > c}) = 0 for some c. Assume that the number

c0 := inf {c ∈ R : µ({f > c}) = 0}

is real. If it does not, then

∀ c ∈ R : µ({f > c}) = 0 ⇒ µ

[ ⋃
n∈N
{f > −n}︸ ︷︷ ︸
{f=−∞}c

]
≤
∞∑
n=1

µ ({f > −n})︸ ︷︷ ︸
0

= 0

14



which implies f = −∞ almost everywhere.
Since c0 is infimum, this means that ∀ ε > 0:

µ({f > c0 + ε}) = 0 ∧ µ({f ≤ c0 − ε}) = 0

which implies µ({f 6= c0}) = 0.

2→ 3: Trivial.

3→ 1: Let A ∈M be flow invariant. Then by definition 1A is flow invariant and thus constant (0 or 1) almost
everywhere. But this precisely means µ(A) = 0 or µ(Ac) = 0.

3→ 4: Trivial.

4→ 1: Same as 3→ 1.

3.3.4 Theorem: Characterization of ergodic G-flows

Let (M,M, µ) be a measure space and (τg)g∈G a measure preserving G-flow. Then the following statements
are equivalent:

1. (τg) is ergodic.

2. For any A ∈M with µ(A) > 0: ⋃
g∈G

τg(A)︸ ︷︷ ︸
τG(A)

= M(mod0)

that is, the trajectory of A covers almost all of M .

3. For µ(A) > 0 almost every trajectory visits A, that is:

µ[{x ∈M : {τg(x)}g∈G︸ ︷︷ ︸
τG(x)

∩A = ∅}] = 0 .

4. If µ is σ-finite: Any (τg)-invariant measure ν � µ 10, is equal to µ up to a multiplicative constant.

M

A

τg1(A)

τg2(A)
τg3(A)

Figure 7: Trajectory of set A in M .

10A measure ν is called absolutely continuous with respect to µ, if µ(A) = 0 implies ν(A) = 0. We write ν � µ. Note that by
the Radon-Nikodym theorem, if µ is σ-finite, this implies the existence of a density dν

dµ
.
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Proof:

1→ 2: Since τG(A) is (τg)-invariant and τG(A) ⊃ A one has

µ(τG(A)) ≥ µ(A) > 0 ,

which implies
µ
[(
τG(A)

)c]
= 0 .

2→ 3: Since τG(A) is (τg)-invariant:

τG(x) ∩A = ∅ ⇔ τG(x) ∩ τG(A) = ∅ ⇔ x /∈ τG(A) ,

which implies
µ[{x ∈M : τG(x) ∩A = ∅}] = µ

[(
τG(A)

)c]
= 0 .

3→ 1: Let A ∈M be (τg)-invariant and µ(A) > 0. Then A = τG(A) and similar to above:

τG(x) ∩A = ∅ ⇔ x /∈ τG(A) = A ,

which implies
0 = µ[{x ∈M : τG(x) ∩A = ∅}] = µ(Ac) .

1→ 4: For any A ∈M:∫
A

dντg

dµ
dµ = ντg (A) =

∫
M

1(τg)−1A dν =

∫
M

dν

dµ
· 1A ◦ τg dµ =

∫
(τg)−1M

dν

dµ
· (1A ◦ τg) dµ

=

∫
M

1A ·
[
dν

dµ
◦ τ−g

]
dµτg

µτg=µ
=

∫
A

dν

dµ
◦ τ−g dµ

⇒ dντg

dµ
=
dν

dµ
◦ τ−g a.e. (w.l.o.g. everywhere)

Since ν is (τg)-invariant:
dν

dµ
=
dν

dµ
◦ τ−g ,

that is, the density dν
dµ is (τg)-invariant. But by theorem 3.3.3 this means that dν

dµ is constant a.e., hence
ν = c · µ for some c ∈ [0,∞].

4→ 1: Let A be (τg)-invariant and µ(A) > 0. Then define the (τg)-invariant measure

ν(B) :=
µ(B ∩A)

µ(A)

Clearly ν � µ, which implies
ν = c · µ

for some constant c ∈ [0,∞] (actually c > 0, since ν 6= 0), hence:

µ(Ac) =
ν(Ac)

c
=
µ(Ac ∩A)

c · µ(A)
= 0 .
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3.3.5 Corollary about ergodic G-flows in topological spaces

Let (M,M, µ) be a topological, second-countable, strict-positive11 measure space so that M contains the
topology of M and (τg)g∈G an ergodic G-flow. Then almost every trajectory τG(x) is dense in M , that is,

µ
{
x | ∃ open U 6= ∅ : τG(x) ∩ U = ∅

}
= 0

Example: Any complete, ergodic Hamilton-flow (ϕXHt )t∈R on a C∞ manifold with an induced Lebesgue-
measure, almost surely leads to dense trajectories.

Proof: Let ∅, U1, U2, .. be the topological basis of M (Ui 6= ∅). Then{
x | ∃ open U 6= ∅ : τG(x) ∩ U = ∅

}︸ ︷︷ ︸
Ω

=
{
x :| ∃ i ∈ N : τG(x) ∩ Ui = ∅

}
=
{
x :| ∃ i ∈ N : x /∈ τG(Ui)

}
=
⋃
i∈N

[
τG(Ui)

]c
︸ ︷︷ ︸

∈M

and thus

µ(Ω) ≤
∞∑
i=1

µ

[(
τG(Ui)︸ ︷︷ ︸
M(mod0)

(3.3.4)

)c]
︸ ︷︷ ︸

0

= 0 .

3.3.6 Theorem: Characterization of ergodicity for time- and iteration-semi-flows

Let (M,M, µ) be a probability space and τ : M →M a measure preserving map12 or (τ t) a measure preserving
R+-semi-flow. Then the following statements are equivalent:

1. The system is ergodic.

2. For any real or complex f, g ∈ L2:

lim
n→∞

1

n

n−1∑
k=0

∫
M

f (τn(x)) · g(x) dµ =

∫
M

f dµ ·
∫
M

g dµ

in case of τ , and

lim
T→∞

1

T

T∫
0

dt

∫
M

f
(
τ t(x)

)
· g(x) dµ =

∫
M

f dµ ·
∫
M

g dµ

in case of an R+-semi-flow.

3. For any real or complex f ∈ L1 and almost all x ∈M :

lim
n→∞

1

n

n−1∑
k=0

f (τn(x))︸ ︷︷ ︸
Anf(x)

=

∫
M

f dµ

︸ ︷︷ ︸
〈f〉µ

(3.3.6.1)

in case of τ , and

lim
T→∞

1

T

T∫
0

f
(
τ t(x)

)
dt

︸ ︷︷ ︸
AT f(x)

= 〈f〉µ

11For any open, non-empty set U : µ(U) > 0 .
12We identify any map τ with its iteration-semi-flow (τn)n∈N0

or iteration-flow (τn)n∈Z (if τ bijective). Notice that measure
invariance of (τn) is equivalent to measure invariance of τ .
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in case of an R+-semi-flow.
Note that this expresses exactly the often sought-after notion time averages equal phase averages for state
variables f in ergodic, dynamical systems.

4. For any set A ∈M and almost all x ∈M :

lim
n→∞

An1A(x)︸ ︷︷ ︸
SA(x)

= µ(A) (3.3.6.2)

in the case of τ , and
lim
T→∞

AT 1A(x) = µ(A)

in the case of an R+-semi-flow.

Note:

• The above limes is exactly the sojourn time of x ∈M in A (compare to corollary 3.2.5). Almost every
trajectory is thus in some sense equidistributed within M !

• Applying this statement to open sets, yields the denseness of almost every future trajectory {τnx} (or
{τ tx}) in any topological, strict-positive, finite measure space (compare to corollary 3.3.5).

5. For any A,B ∈M

lim
n→∞

1

n

n−1∑
k=0

µ
[
(τn)−1(A) ∩B

]
= µ(A) · µ(B)

in the case of τ , and

lim
T→∞

1

T

T∫
0

µ
[
(τ t)−1(A) ∩B

]
= µ(A) · µ(B)

in case of an R+-semi-flow.

6. In case of τ : For any A ∈M: Let

RA(x) := inf [{n ∈ N : τn(x) ∈ A} ∪ {∞}]

be the next visit time of A by the future trajectory of x ∈M and

R0
A(x) := RA(x) , Ri+1

A (x) :=

{
RA

[
τR

i
A(x)x

]
+RiA(x) : RiA(x) <∞

∞ : RiA(x) =∞

the visiting times of A by x in increasing order. Then for almost all x ∈M :

lim
n→∞

RnA(x)

n
=

1

µ(A)
.

Note that the above limes is exactly the average visiting period of A by the trajectory {τnx}.

7. In case of τ : For any µ(A) > 0: ⋃
n∈N0

(τn)−1(A)︸ ︷︷ ︸
τ−N0 (A)

= M(mod0) .

8. In case of τ : For any µ(A) > 0: Almost every trajectory {τn(x)}n∈N0︸ ︷︷ ︸
τN0

visits A, that is,

µ
({
x : τN0(x) ∩A = ∅

})
= 0

(compare to theorem 3.3.4 on G-flows).
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9. In case of τ : For any µ(A) > 0: ∫
A

RA dµ = 1 .

In other words: The average return time for points in A is 1/µ(A).

See also [3],[4].

Note: Many of the above properties, like (4) and (9) about average sojourn & return times, are in accordance
with what simple intuition often leads to assume. But as this theorem proves, these are generally not given and
actually only hold for ergodic systems.

Proof:

1→ 2: Using Neumann’s ergodic theorem (3.2.6) one obtains the convergence of

Anf :=
1

n

n−1∑
k=0

f ◦ τn

to
∫
M

f dµ with n → ∞ in ‖·‖2, for f ∈ L2. Now consider the Hilbert-space (L2, 〈·, ·〉). Since 〈·, ·〉 is
continuous in ‖·‖2:

Anf
n→∞−→
‖·‖2

∫
M

f dµ ⇒
∫
M

g ·Anf dµ = 〈g∗, Anf〉 n→∞−→
〈
g∗,

∫
M

f dµ

〉
=

∫
M

g dµ ·
∫
M

f dµ .

The convergence in the case of AT f can be reduced to the discrete case ATif by the very definition of
convergence T →∞.

1→ 3: With Birkhoff’s ergodic theorem we have

lim
n→∞

Anf(x) = f(x)

almost everywhere and ∫
M

f dµ =

∫
M

f dµ

for some τ -invariant f ∈ L1. But by theorem 3.3.3 f is constant f(x) = f0 a.e., which implies

lim
n→∞

Anf(x) = f0 =

∫
M

f dµ =

∫
M

f dµ = 〈f〉µ

almost everywhere. The case of (τ t) is similar.

3→ 4: By setting f = 1A we obtain:

lim
n→∞

An1A(x) =

∫
M

1A dµ = µ(A)

almost everywhere. The case of the (τ t) is analogous.

4→ 1: For any τ -invariant A ∈M one has

1A(x) = lim
n→∞

1A︷ ︸︸ ︷
An1A(x) = µ(A)

for almost all x ∈M and thus µ(A) = 0 or µ(A) = 1. The case of the semi-flow is analogous.
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2→ 5: Set f := 1A and g = 1B , to obtain

lim
n→∞

1

n

n∑
k=0

µ
[
(τn)−1(A) ∩B

]
= lim
n→∞

1

n

n∑
k=0

∫
M

(

1(τn)−1(A)︷ ︸︸ ︷
1A ◦ τn ) · 1B dµ = µ(A) · µ(B) .

The case of a (τ t) is analogous.

5→ 1: For any τ -invariant A ∈M set B := A and so

µ(A) = lim
n→∞

1

n

n−1∑
k=0

µ[(τn)−1(A)︸ ︷︷ ︸
A

∩A] = [µ(A)]
2

which implies µ(A) = 0 or µ(A) = 1. The case of (τ t) is similar.

4↔ 6: By construction

lim
n→∞

An1A(x) = lim
n→∞

1

n

n−1∑
k=0

1A(τkx) = lim
n→∞

(n+ 1) + 1A(x)

RnA(x) + 1
= lim
n→∞

n

RnA(x)
.

1→ 7: Obviously
τ−1

(
τ−N0(A)

)
⊂ τ−N0(A) .

By Lemma A.3.3 there exists a τ -invariant set B such that B = τ−N0(A)(mod0). Since µ(B) ≥ µ(A) > 0
this implies

0 = µ(Bc) = µ
[(
τ−N0(A)

)c]
.

7→ 8: Let µ(A) > 0. Since

τN0(x) ∩A = ∅ ⇔ τN0(x) ∩ τ−N0(A) = ∅ ⇔ x /∈ τ−N0(A)

one has
µ
({
x : τN0(x) ∩A = ∅

})
= µ

[(
τ−N0(A)

)c]
= 0 .

8→ 1: Let A ∈M be τ -invariant and µ(A) > 0. Then τ−N0(A) = A and thus

0 = µ
({
x : τN0(x) ∩A

})
= µ

[(
τ−N0(A)

)c]
= µ(Ac) .

7→ 9: By corollary 3.1.3 of the Poincaré recurrence theorem:

1
7.
= µ

(
τ−N0(A)

) (3.1.3)
=

∫
A

RA dµ .

9→ 1: Let A be τ -invariant and µ(A) > 0, then since RA
∣∣
A

= 1:

µ(A) =

∫
A

RA dµ = 1 .

3.3.7 Lemma: Ergodicity in metrically isomorphic systems

Let (M,M, µ, (τg)g∈G) and (N,N , ν, (λg)g∈G) be metrically isomorphic through ϕ : M → N . Then (τg) is
ergodic ⇔ (λg) is ergodic.
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Interpretation: Metrically isomorphic systems arise naturally under coordinate transformations on manifolds
describing dynamical systems. In that case this lemma expresses nothing other than the coordinate-invariance
of ergodicity.

An important conclusion is, that a.e. trajectory of an ergodic flow on n-dimensional C1-manifolds can not be
recurrent, as the image of a.e. trajectory would be dense in some open subset of Rn. But recurrent trajectories
have finite length (as continuous images of compact time-interval), which precludes their denseness.

Proof: It suffices to show one of the two directions, since metrical isomorphicity is symmetric between the two
systems. Note that the measure invariance of (τg) is equivalent to the measure invariance of (λg). For any set
A ∈M the (τg)-invariance of A is equivalent to the (λg)-invariance of ϕ(A), since 1ϕ(A) = 1A ◦ ϕ−1 (see notes
in 2.0.7). Now let (τg) be ergodic and B ∈ N (λg)-invariant. Then ϕ−1(B) is (τg)-invariant, which implies

µ(ϕ−1(B)) = 0 ∨ µ
[ (
ϕ−1(B)

)c︸ ︷︷ ︸
ϕ−1(Bc)

]
= 0 .

But since ϕ is measure preserving, this means ν(B) = 0 or ν(Bc) = 0.

3.3.8 Notes on measure-invariance of ergodicity

Let (M,M) be a measurable space and (τg)g∈G a G-semi-flow on M . Let ν � µ be (τg)-invariant measures.
Then:

1. If (τg) is ergodic to µ, then it is also ergodic to ν.

2. If dνdµ > 0 µ-almost everywhere and (τg) is ergodic to ν, then it is also ergodic to µ.

Notes:

• Recall that any measure ν with some density dν
dµ , is absolutely continuous with respect to µ.

• For any (τg)-invariant, equivalent13 measures µ, ν, ergodicity to the one implies ergodicity to the other.

• Compare statement 1. to theorem 3.3.4, which in case of (τg) being a G-flow would actually imply
ν = const ·µ.

Proof:

1. Follows directly from definition of ergodicity.

2. Let A ∈M such that
0 = ν(A) =

∫
A

dν

dµ
dµ .

Then dν
dµ = 0 µ-almost everywhere in A. But this implies µ(A) = 0, hence µ� ν. Statement 1. implies what

was to be shown.

3.4 Strict ergodicity in topological spaces
Up until now, we did not require any specific structure for the phase-space other than that of a measurable
space. Assuming some extra structure (e.g. topological), allows for an even deeper insight into ergodic systems
and the development of more ideas, akin to that of ergodicity.

An important result for compact, topological spaces, is the existence of invariant, ergodic measures, to be
addressed below. We shall furthermore introduce a special case of ergodicity, so called strict ergodicity, which
allows for even stronger statements for dynamical systems.

13Two measures are called equivalent, if they have the same nullsets.
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3.4.1 Theorem: Existence of invariant Borel-measures

Let (M,M) be a compact, metrizable14, measurable space andM the Borel-σ-algebra on M . Let (τg)g∈G be
a 1-parameter G-semi-flow (i.e. G ⊂ R measurable) and every τg : M → M continuous15. Then there exists a
(τg)-invariant, probability Borel measure.

Proof: I shall generalize the Krylov-Bogoliubov theorem[17].

• In the following proof identify each finite measure µ with the induced positive, linear functional

µ(f) :=

∫
M

f dµ (3.4.1.1)

on the Banach-space (C(M), ‖·‖∞). Recall that by the Frigyes-Riesz representation theorem for metrizable
spaces, any positive, linear functional µ on (C(M), ‖·‖∞) is identifiable with a unique, inner-regular16 Borel
measure satisfying eq. 3.4.1.1.

• By the existence theorem of André Weil, there exists a non-trivial Haar measure γ on the Borel-σ-algebra
G := B(R) ∩ G such that γ(G ∩ [0, g0]) < ∞ for any g0 ∈ G. Clearly γ(G ∩ [0, g0]) > 0 for 0 6= g0 ∈ G
and thus γ(G) =∞. Within the context of this proof we shall only consider set intersections with G and
omit ”G∩”.

• Choose g0 ∈ G, w.l.o.g. g0 > 0. Now given some arbitrary, initial probability measure µ on (M,M),
consider the sequence of probability measures

µn(f) :=
1

γ([0, n · g0])
·
n·g0∫
0

µ (f ◦ τg) dγ(g) , n ∈ N

on (M,M). Since M is compact, by lemma A.3.4 the set M of probability measures on M is weakly*
compact17, therefore the sequence µn has an accumulation point ν ∈ M, with µnk

k→∞−→
weak*

ν for some

subsequence (µnk)k ⊂ (µn)n. Furthermore for any h ∈ G:

∣∣µnk(f ◦ τh)− µnk(f)
∣∣ =

∣∣∣∣ 1

γ([0, nkg0])

nkg0∫
0

µ
(
f ◦ τh+g

)
dγ(g)− 1

γ([0, nkg0])

nkg0∫
0

µ (f ◦ τg) dγ(g)

∣∣∣∣

=
1

γ([0, nkg0])

∣∣∣∣
h+nkg0∫
h

µ(f ◦ τg) dγ(g)−
nkg0∫
0

µ(f ◦ τg) dγ(g)

∣∣∣∣

≤ 1

γ([0, nkg0])

∣∣∣∣
h+nkg0∫
nkg0

µ(f ◦ τg) dγ(g)

∣∣∣∣+

∣∣∣∣
h∫

0

µ(f ◦ τg) dγ(g)

∣∣∣∣


≤ 2 · γ([0, h])

γ([0, nkg0])
‖f‖∞︸ ︷︷ ︸
<∞

=
‖f‖∞
nk

· 2 · γ([0, h])

γ([0, g0])

k→∞−→ 0 .

14A topological space T is called metrizable, if it admits a metric d(·, ·) such that d produces its topology. Note that any compact,
second-countable Hausdorff space is metrizable.

15A map τ : M →M is continuous, if the preimages of open sets are open.
16The measure µ is inner-regular if for any A ∈M : µ(A) = sup {µ(K) : K ⊂ A, K compact}.
17A sequence {µn}n of measures on a topological space M with the Borel σ-algebra, converges weakly* to µ, if for any bounded,

continuous function f : M → C the following holds:
∫
M

f dµn
n→∞−→

∫
M

f dµ. A set M of measures on M is weakly* compact, if

every sequence of measures in M contains a weak* convergence subsequence.[5][10]
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By choice of ν this implies

ν(f ◦ τh)︸ ︷︷ ︸
ν
τh

(f)

= lim
k→∞

µnk
(
f ◦ τh

)
= lim
k→∞

µnk (f) = ν(f) , f ∈ C(M) .

But by Riesz, this implies ν = ντ . By construction, ν(M) = 1.

3.4.2 Theorem: Existence of ergodic Borel measures

Let (M,M) be a metrizable, compact, measurable space, such thatM = B(M). Let (τg)g∈G be a 1-parameter
G-semi-flow (i.e. G ⊂ R measurable) on (M,M) and every τg : M → M continuous. Then there exists a
(τg)-invariant, ergodic probability Borel measure.

Interpretation: Consider some dynamical system described by the measurable space (M,B(M)) and the
time-flow (τ t)t∈R. Then among all possible equilibrium states, which by the Krylov-Bogoliubov lemma exist, at
least one actually turns the flow into an ergodic one! Of course, nothing is said about the structure, let alone
the physical meaning, of this measure. In the not-unusual case of the existence of a fixed-point x0 of the flow,
the Dirac-measure δx0 would be an ergodic, equilibrium probability measure, expressing the dull triviality of
the system’s evolution.

Proof: Using the generalized Krylov-Bogoliubov theorem, I shall generalize the proof found in [17]. Consider
some countable, dense set of functions {fi}i∈N ⊂ C(M) in the Banach-space (C(M), ‖·‖∞) and define the
monotonically decreasing sequence of measure-families

Mi+1 :=

{
µ ∈ Mi : µ(fi+1) = max

ν∈Mi
ν(fi+1)

}
with M0 := M((τg)) as the set of (τg)-invariant probability Borel measures. By definition of weak* convergence of
measures, the map ν 7→ ν(fi+1) is continuous, hence, compactness and non-emptiness of Mi implies compactness
and non-emptiness18 of Mi+1. Since M0 is compact (see lemma A.3.4) and non-empty by the Krylov-Bogoliubov
theorem, these properties hold for all Mi. By construction, Mi are convex, thus the intersection D :=

⋂
iMi is

also convex and non-empty19.
We show that D ⊂ M((τg)) contains only extreme points of M((τg)). Suppose

µ = t · µ1 + (1− t) · µ2 ∈ D

with µ1, µ2 ∈ M0, t ∈ [0, 1], then for all f ∈ C(M):

µ(f) = t · µ1(f) + (1− t) · µ2(f) .

But since µ ∈ M1, it follows µ(f1) ≥ µj(f), j = 1, 2 and thus µ(f1) = µ1(f1) = µ2(f1), hence µj ∈ M1. By
induction it follows that µ(fi) = µj(fi) and µj ∈ Mi, i ∈ N, j = 1, 2. By construction the linear functionals
µ, µj : C(M) → C are bounded and thus continuous. Consequently, as {fi} is dense in C(M), it follows that
µ(f) = µj(f) ∀ f ∈ C(M) (see lemma A.2.1). By the Frigyes Riesz representation theorem, one has µ = µj ,
that is, µ is extremal in M((τg)).

By lemma A.3.4 this implies that (τg) is ergodic to µ.

3.4.3 Definition: Strictly ergodic semi-flow

Let (M,M) be a topological, measurable space with the Borel-σ-algebraM. The G-semi-flow (τg)g∈G is strictly
ergodic, if it has precisely one invariant, probability Borel measure µ. [3]

18Recall that any continuous map f : K → R on a compact set K 6= ∅ is bounded and attains its supremum. Since f is continuous,
the set of points {x ∈ K : f(x) = maxx∈K f(x)} is closed. Furthermore, any closed subset of a compact set is compact.

19Note that the intersection of a monotonically decreasing sequence of compact, non-empty sets Mi ⊃ Mi+1 in a topological
space is non-empty. Otherwise

{
M
c
i

}
i∈N would be an open cover of M1. Consequently, finitely many

{
M
c
i

}
i∈I would still be a

cover of M1, thus M1 ∩
⋂
i∈I Mi = ∅, a contradiction!
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Interpretation: Any strictly-ergodic semi-flow is actually ergodic with regard to its invariant probability
measure µ. Otherwise, for some (τg)-invariant set A ∈M with 0 < µ(A) < 1, the probability measure

µA(B) :=
µ(A ∩B)

µ(A)

would also be (τg)-invariant but µA 6= µ.
Now consider a dynamical system, described by the manifold M and some R+-flow (τ t) (e.g. Hamilton-flow).
If (τ t) is uniquely ergodic, then there exists exactly one probability (Borel) measure describing the system in
equilibrium. With regards to that equilibrium measure, the system is actually ergodic!

3.4.4 Theorem: Strict ergodicity of homeomorphisms

Let (M,M, µ) be a compact metric, probability space and M = B(M). Let τ : M → M be a measure
preserving homeomorphism20 on M . Then the following statements are equivalent:

1. (τn)n∈Z is strict ergodic.

2. For any f ∈ C(M) and every point x ∈M :

lim
n→∞

1

n

n−1∑
k=0

f
(
τkx

)
︸ ︷︷ ︸

Anf(x)

=

∫
M

f dµ

︸ ︷︷ ︸
µ(f)

.

3. For any f ∈ C(M) the time means Anf converge in ‖·‖∞ to µ(f).

4. In case that µ is strictly positive and τ a contraction21: (τn)n∈Z is ergodic.

Proof:

1↔ 2↔ 3: See [3] Chapter 1, §8 and [17] chapter 4.

1→ 4: Every strictly ergodic semi-flow is ergodic.

4→ 2: We shall generalize the proof found in [3] for the torus-flow. Let f ∈ C(M) and ε > 0. As f is uniformly
continuous (since M compact) there exists a δ > 0 such that

|f(x)− f(y)| < ε

2
for d(x, y) < δ .

Due to ergodicity of (τn) the relation

lim
n→∞

1

n

n−1∑
k=0

f
(
τkx

)
=

∫
M

f dµ

(see theorem 3.3.6) holds on some full-measure set A ⊂M . As µ is strictly positive this set A is dense in
M and thus contains a finite δ-net22 x1, .., xr ∈ A. By construction there exists a n0 ∈ N such that∣∣∣∣ 1n

n−1∑
k=0

f
(
τkxi

)
−
∫
M

f dµ

∣∣∣∣ < ε

2

20A bijection f , with f and f−1 continuous, is called a homeomorphism. In context of measure spaces, we further demand
measurability of f . Note that continuous bijections from compact to Hausdorff spaces (which is the case here) are homeomorphisms.

21A map f : X → Y between two metric spaces (X, dX) and (Y, dY ) is a contraction, if dY (f(a), f(b)) ≤ dX(a, b) for a, b ∈ X.
22A set of points {xi}i∈I with I a directed set, in a metric space X is called a δ-net, if X =

⋃
i∈I

Boδ (xi). Note that every compact

metric space has a finite δ-net for any δ > 0. Actually, every dense subset A ⊂ X contains a finite δ-net. To see this, choose a
δ/2-net x1, .., xn in X, and for all points xi /∈ A, a point x′i ∈ Boδ/2(xi).
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for all n ≥ n0 and 1 ≤ i ≤ r. But for any x ∈M we have d(x, xi) < δ for some 1 ≤ i ≤ r and thus

d
(
τkx, τkxi

)
< δ

for any k ≥ 0. This implies∣∣∣∣ 1n
n−1∑
k=0

f
(
τkx

)
−
∫
M

f dµ

∣∣∣∣ ≤ ∣∣∣∣ 1n
n−1∑
k=0

[
f
(
τkx

)
− f

(
τkxi

)] ∣∣∣∣+

∣∣∣∣ 1n
n−1∑
k=0

f
(
τkxi

)
−
∫
M

f dµ

∣∣∣∣ < ε

2
+
ε

2
= ε

for all n ≥ n0.

3.4.5 Corollary for strictly ergodic homeomorphisms

Let (M,M, µ) be a compact metric space with the Borel-σ-algebraM = B(M) and τ : M →M strictly ergodic
to the τ -invariant probability Borel measure µ. If µ is strict positive, then every trajectory {τn(x)}n∈Z is dense
in M .

Proof: See [3] Chapter 1, §8

3.5 Mixing
Though ergodicity was very quickly accepted as an important property of certain dynamical systems, it later
became evident, that even stronger traits might be existent in some systems, in particular the ones emerging
in physics. In an attempt to describe such properties as physical mixing, relaxation and sensitivity to initial
conditions, a new concept has been introduced, so called mixing.

Mixing systems, as it turns out, exhibit some very interesting properties including ergodicity and sensitive
dependence on initial conditions, typically found in chaotic systems [29].

3.5.1 Definition: Relaxing systems

Let (M,M, µ) be a probability space and (τg)g∈G an ordered, µ-preserving G-semi-flow, such that, for any
probability measure µ0 � µ with dµ0

dµ ∈ L2(M,M, µ), the image measures µg := (µ0)τg converge setwise23 to µ
as g →∞ 24. Then the system (M,M, µ, (τg)) is called relaxing with relaxation measure µ.

Interpretation: Relaxation describes systems, which independently of their initial probability distribution
µ0 tend to pass over to a certain relaxation distribution µ. In a sense, such systems (if described on topological
spaces) display a weaker form of strict ergodicity, since µ is the only equilibrium measure of the class of measures
absolutely continuous to µ.

23The family of measures {µg}g∈G converges setwise to µ, if for every set A ∈M: lim
g→∞

µg(A) = µ(A).
24The limes should be taken as a generalization in the following sense: We write lim

g→∞
ag = a for some family {ag}g∈G ⊂ T (T a

topological space, a ∈ T ) if:
∀ open U︸︷︷︸

3a
: ∃ g0 ∈ G : ∀ g ≥ g0 : ag ∈ U .

Note that uniqueness as well as linearity of the limes are still preserved if T is Hausdorff. If T = R then monotony is also preserved.
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Figure 8: Evolution of density ρt of image measure (µ0)τt
in a 2D relaxing system. Relaxation measure is standard-
normal distribution.

3.5.2 Lemma about system relaxations

Let (M,M, µ) be a measure space and (τg)g∈G a 1-parameter G-flow, that is, G ⊂ R (e.g. Z,R). Let µ0 be
some initial measure, such that the sequence of image-measures µg := (µ0)τg converges setwise to µ as g →∞.
Then µ0 � µ.

Interpretation: Consider a dynamical system described by the measurable space (M,M), the R-flow (τ t)t∈R
(e.g. Hamilton-flow) and the equilibrium probability distribution µ. Suppose the initial probability distribution
µ0 is not absolutely continuous to µ. An example would be that µ0 is concentrated on some µ-nullset. Then
the system’s probability distribution can not possibly setwise converge to the equilibrium µ.

Proof: We first show the statement for automorphisms τ . Suppose µ(A) = 0 6= µ0(A) for some A ∈M. Then
the trajectory τZ(A) is a countable union of µ-nullsets, thus its self a µ-nullset. Furthermore, it is τ -invariant,
and thus

µn︷ ︸︸ ︷
(µ0)τn(τZA) = µ0(τZA) ≥ µ0(A) > 0

which implies
lim
n→∞

µn(τZA) = µ0(τZA) 6= 0 = µ(τZA) .

Now consider the general case G ⊂ R, w.l.o.g. G 6= {0} (otherwise the statement is trivial). Then for some 0 <

t0 ∈ G, the automorphism τ t0 induces a Z-flow ((τ t0)n)n∈Z ⊂ (τ t)t∈G similar to above. Suppose (µ0)τt
t→∞−→
setwise

µ,
then in particular

(µ0)(τt0 )n
n→∞−→
setwise

µ .

But this implies µ0 � µ.

3.5.3 Definition: Mixing G-semi-flows

Let (M,M, µ) be a probability space and (τg)g∈G an ordered, measure preserving G-semi-flow. Then (τg) is
called mixing, if for any two functions f1, f2 ∈ L2 the relation

lim
g→∞

∫
M

f∗1 · (f2 ◦ τg) dµ =

∫
M

f∗1 dµ ·
∫
M

f2 dµ (3.5.3.1)

holds25. See also [3] and [17] for an alternative definition.

25Note that by the Hölder inequality we have ‖f1 · f2‖1 ≤ ‖f1‖2 · ‖f2‖2 for any f1, f2 ∈ L2. Since µ(M) = 1 this further implies
‖f1‖1 ≤ ‖f1‖2.
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3.5.4 Theorem: Characterization of mixing G-semi-flows

Let (M,M, µ) be a probability space and (τg)g∈G a measure preserving, orderedG-semi-flow. Then the following
statements are equivalent:

1. The system (M,M, µ, (τg)) is relaxing.

2. The semi-flow (τg) is mixing.

3. For any sets A1, A2 ∈M the relation

lim
g→∞

µ
[
A1 ∩ (τg)−1A2

]
= µ(A1) · µ(A2)

holds.

4. If (τg) is a G-flow, then for any sets A1, A2 ∈M the relation

lim
g→∞

µ [A1 ∩ τgA2] = µ(A1) · µ(A2)

holds.

Interpretation: Consider a mixing dynamical system described by the measurable space (M,M), the ordered
G-flow (τg)g∈G and the relaxation probability distribution µ. Then the flow mixes any set A ∈ M, µ(A) > 0
throughout the whole space, in the sense that, for any finite number of sets with positive measure, there exists
some time, after which each one is always intersected by τgA (see lemma 3.5.5 below).

Similarly, the probability26, that a point x of A intersects some arbitrary set B at time g, converges to µ(B)
as g →∞.

Figure 9: Evolution of some set A under the flow-action
in mixing systems, with the Lebesgue-measure as relaxation
measure.

Proof:

1→ 3: Let A1, A2 ∈ M and w.l.o.g. µ(A1) > 0 (otherwise the statement is trivial). Then the probability
measure

µ0(B) :=
µ [A1 ∩B]

µ(A1)

is absolutely continuous with respect to µ with density

dµ0

dµ
=

1

µ(A1)
· 1A1

∈ L2(M,M, µ)

Thus

µ
[
A1 ∩ (τg)−1A2

]
µ(A1)

= µ0

[
(τg)−1A2

]
= µg(A2)

g→∞−→ µ(A2) .

Note: Alternatively, setting f1 := A1, f2 := A2 in eq. 3.5.3.1 yields what is to be shown.

26Formally given by µ(B∩τgA)
µ(A)

.
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2→ 1: We shall adopt the proof in [3]. Let µ0 � µ be a probability measure with dµ0

dµ ∈ L2(M,M, µ). Then
for any A ∈M:

lim
g→∞

µg(A) = lim
g→∞

∫
M

1A dµg = lim
g→∞

∫
(τg)−1(M)

1A ◦ τg dµ0
(τg)−1(M)=M

= lim
g→∞

∫
M

dµ0

dµ
· (1A ◦ τg) dµ

=

∫
M

dµ0

dµ
dµ

︸ ︷︷ ︸
µ0(M)=1

·
∫
M

1A dµ

︸ ︷︷ ︸
µ(A)

= µ(A) .

3↔ 4: Since (τg) is measure preserving:

µ [A1 ∩ τgA2]
µτg=µ

= µ
[
τ−g (A1 ∩ τgA2)

]
= µ

[
(τ−gA1) ∩A2

]
.

Setting A′1 := A2, A
′
2 := A1 on the right-hand-side yields what was to be shown.

3→ 2: Clearly for any A1, A2 ∈ M the functions f1 := 1A1 and f2 := 1A2 satisfy eq. 3.5.3.1. As indica-
tor functions of measurable sets form a complete set27 in L2, lemma A.3.5 implies its validity for any
f1, f2 ∈ L2.

3.5.5 Lemma about mixing systems

Let (M,M, µ) be a probability space and (τg)g∈G a mixing G-semi-flow. Then:

1. The semi-flow (τg) is ergodic.

2. Let (τg) be a G-flow. Then for any start-set As ∈ M, µ(As) > 0 and finite family of target-sets {Ai}i∈I
with positive measure, there exists some g0 ∈ G, such that τg ∩Ai 6= ∅ for all i ∈ I, g ≥ g0.

3. Let (τg) be a G-flow, (M,d) a metric space such thatM contains the topology of M and µ strict positive.
Then (τg) is sensitively dependent on initial conditions28.

Figure 10: Sensitive dependency on initial conditions in
a mixing system in R2. Arbitrarily close points eventually
always drift apart.

Proof:

1. Let A ∈M be (τg)-invariant. Then by theorem 3.5.4:

µ(A) = lim
g→∞

µ[A ∩
A︷ ︸︸ ︷

(τg)−1A] = [µ(A)]
2

which is only possible if µ(A) = 0 or µ(A) = 1.
27By construction of the integral.
28An ordered semi-flow (τg)g∈G is sensitively dependent on initial conditions if there exists some δ > 0 such that for any x ∈M

and open neighborhood Ux︸︷︷︸
3x

there exists some y ∈ Ux \ {x} and 0 ≤ g ∈ G such that d(τgy, τgx) > δ.
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2. Choose
ε < min

i∈I
{µ(Ai)} · µ(As) .

Then by theorem 3.5.4 there exists some g0 ∈ G such that

µ (Ai ∩ τgAs) ≥ µ(Ai) · µ(As)− ε > 0 ∀ i ∈ I, g ≥ g0 ,

hence τgAs ∩Ai 6= ∅.

3. Choose some a 6= b ∈M and set δ := 1
8d(a, b). Now let Ux ∈M be open and x ∈ Ux. Then by statement 2.

at some time g ∈ G:
τg(Ux) ∩Boδ (a) 6= ∅ ∧ τg(Ux) ∩Boδ (b) 6= ∅ .

But this implies that there exists no c ∈M such that

τgUx ⊂ Boδ (c)

since otherwise there would exist xa ∈ Boδ (a) ∩Boδ (c) and xb ∈ Boδ (b) ∩Boδ (c) and so

d(a, b) ≤ d(a, c) + d(c, b) ≤ d(a, xa) + d(xa, c) + d(c, xb) + d(xb, b) ≤ 4δ ,

a contradiction! In particular τgUx 6⊂ Boδ (τgx).

3.5.6 Lemma: Mixing in metrically isomorphic systems

Let (M,M, µ, (τg)g∈G) and (N,N , ν, (ρg)g∈G) be metrically isomorphic systems by ϕ : M → N . Then: (τg) is
mixing, if and only if (ρg) is mixing.

Proof: Since metrical isomorphicity is symmetric, it suffices to show only one direction. Let (M,M, µ, (τg))
be relaxing, ν0 � ν and B ∈ N . Then (ν0)ϕ−1 � µ and thus

(ν0)ρg (B) = ν0

[
(ρg)−1B

]
= ν0

[
ϕ ◦ (τg)−1ϕ−1B

]
=
[
(ν0)ϕ−1

]
τg

[
ϕ−1B

] g→∞−→ µ
[
ϕ−1B

]
= ν(B) ,

hence the system (N,N , ν, (ρg)) is relaxing.

Notes on mixing in physical systems

When considering dynamical systems arising in nature, one is typically confronted with systems described by
a disproportionately large number of parameters, with time-flows impossible to explicitly calculate. It is thus
not an unusual approach, to assume some sort of ergodicity of the flow with respect to some, preferably already
known, equilibrium probability distribution.

As a typical example shall be named the classical ideal gas, trapped within some bounded region. The energy
leaf Lh = {H = h} is in this case compact, and easily allows for the formulation of an equilibrium distribution
µh on it (see section 4.1.8), expressing in a sense the typical presence of absolute uncertainty. It is with respect
to this measure, that ergodicity is often assumed. An empirical justification comes from the observed fact, that
existing information (i.e. some initial probability distribution µ0 6= µh, typically µ0 � µh) tends to blur out
as time passes and any expectations for the system’s state converge to the equilibrium distribution µh. This is
exactly the behavior describing relaxing systems (3.5.1), thus implying the mixing-property and ergodicity.

3.6 Ergodicity in random variables
3.6.1 Preconsiderations

We have so far studied the evolution of dynamical systems and their probability distributions with respect to
their flow in abstract measure spaces. Often though, systems can never possibly be observed in their complete
detail, let alone described. In many cases, one can observe or measure a finite set of variables describing the
system, so called random variables, which in the most general case correspond to some measurable map X from
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the phase-space (M,M, µ) into some other measurable space (N,N ). Their probability distribution is nothing
else than the image measure µX induced by the map X : M → N .

Typical examples of random variables are mappings into Rn, like the temperature of some gas, the velocity
of one particle etc. The question arises, as to what behavior is to be expected for these variables and if they
exhibit any of the notions described above, in particular some sort of ergodicity.

Note that as a rule, a system is not completely described by the random variables (i.e. observables) at one’s
disposal. Thus the introduction of a flow into N is somewhat pointless, since a single value in N may correspond
to several sates of the system, each with its own particular future.

3.6.2 Lemma: Trajectories for random variables

Let (M,M, µ) be a probability space, (N,N ) a measurable space and X : M → N a random variable. Then:

1. In case that (M,M) and (N,N ) are topological and X continuous, surjective: If any trajectory τGx is dense
in M , then its image XτGx is dense in N as well.

2. In case that (M,M) and (N,N ) are topological29, M second countable and X continuous: For almost all
x ∈M , the trajectory XτNx comes arbitrarily close to Xx (compare: Poincaré recurrence theorem).

3. If a trajectory τGx of a G-semi-flow (τg)g∈G has the property A ∩ τGx 6= ∅ for any µ(A) > 0, then the
trajectory XτGx has the similar property: B ∩ (XτGx) 6= ∅ for any µX(B) > 0.

4. In case of an ergodic τ : M →M :

a) For any f ∈ L1(N,N , µX) and almost all x ∈M :

lim
n→∞

1

n

n−1∑
k=0

f (Xτn(x))︸ ︷︷ ︸
Anf(Xx)

=

∫
N

f dµX .

b) For any set B ∈ N and almost all x ∈M :

lim
n→∞

An1B(Xx) = µX(B) .

Interpretation: The sojourn time of the X-value of the traveling x in B, is equal to µX(B).

Similar statements (to a. and b.) hold for ergodic R+-semi-flows (τ t)t≥0 (compare to theorem 3.3.6).

Proof:

1. Trivial, as surjective, continuous functions map dense sets to dense sets.

2. By corollary 3.1.4 for a.e. x ∈ M , the trajectory τNx comes arbitrarily close to x. Thus, for any open set
U︸︷︷︸
3Xx

∈ N , there exists some n ∈ N such that τnx ∈ X−1U︸ ︷︷ ︸
open

, hence Xτnx ∈ U .

3. Let µX(B) > 0, then by definition µ(X−1B) > 0. Thus there exists some y ∈ (X−1B) ∩ (τGx), hence

Xy ∈
(
XX−1B

)
∩
(
XτGx

)
= B ∩XτGx .

4. a) Consider the function fX ∈ L1(M,M, µ). Then theorem 3.3.6 (eq. 3.3.6.1) yields what was to be shown.

b) By theorem 3.3.6:

An1B(Xx)
def
=

1

n

n−1∑
k=0

1B(Xτn(x)) =
1

n

n−1∑
k=0

1X−1B(τn(x))
(3.3.6.2)

=
a.e.

µ(X−1B)
def
= µX(B) .

29That is,M and N contain the topologies of M and N respectively.
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3.7 System families and leafs
It is often the case that a dynamical system can be decomposed into independent or invariant sub-systems,
with the system’s flow constructed by some sort of combination of the sub-flows in each sub-system. This
kind of decomposition often promises to ease the analysis of the system and reduce the problem to a lower-
dimensional one. The question about the existence of ergodic behavior on these sub-systems is not exempt from
this reductionism.

We shall in the following examine systems composed of so called leafs, each equipped with some measure,
and address the relation to existing global measures of the space. Moreover, a short connection is established
between so called product-spaces and separable Hamiltonians.

3.7.1 Lemma: Measure construction from leaf-measures

Let (M,M) be a measurable space, (N,N , ν) a measure space and {Lf}f∈N a family of disjoint, measurable
subsets of M . Let (µf )f∈N be a family of measures, such that µf is a measure on the leaf Lf (with σ-algebra
M∩Lf ) and the function µf (A ∩Lf ) measurable (in f) for any A ∈M. Then:

1. The function

µ(A) :=

∫
N

µf (A ∩Lf ) dν(f) , A ∈M (3.7.1.1)

defines a measure on M .

2. If all µf and ν are probability measures, then µ is a probability measure.

3. Let (τg)g∈G be a G-semi-flow and every leaf Lf (τg)-invariant. If ν-almost every µf is (τg)-invariant, then
µ is (τg)-invariant.

4. Let (N,N ) be topological and ν strictly positive. Let (τg)g∈G be a G-flow, such that every leaf Lf is
(τg)-invariant. Let there exist a bi-measurable30 map G : M → K to a measurable space (K,K), such that:

• G
∣∣
Lf

is injective

• µf
(
Lf ∩G−1B

)
is continuous in f for all B ∈ K.

• µf
(
Lf ∩ τ−gG−1B

)
continuous in f for all B ∈ K.

Then: If µ is (τg)-invariant, all µf are (τg)-invariant.

Proof:

1. Clearly µ(∅) = 0 and µ :M→ [0,∞]. Now let A1, A2, .. ∈M be disjoint sets, then:

µ

(⊎
n∈N

An

)
def
=

∫
N

µf

(
Lf ∩

⊎
n∈N

An︸ ︷︷ ︸⊎
n∈N

An∩Lf

)
dν(f) =

∫
N

∞∑
n=1

µf (An ∩Lf ) dν(f)

B. Levi
=

∞∑
n=1

∫
N

µf (An ∩Lf ) dν(f) =

∞∑
n=1

µ(An) .

2. Trivial.

3. Let ν-almost all µf be (τg) invariant, that is, there exists a ν-nullset J ∈ N such that for all f ∈ Jc the
measure µf is (τg)-invariant. Then for any A ∈M:

µ
[
(τg)−1(A)

]
=

∫
N

µf

[
(τg)

−1
(A) ∩Lf

]
dν(f)

ν(J)=0

(τg)−1(Lf )=Lf
=

∫
Jc

µf
[
(τg)−1(A ∩Lf )

]︸ ︷︷ ︸
µf (A∩Lf )

dν(f) = µ(A) .

30We call a map G : (M,M)→ (K,K) bi-measurable if for any A ∈M, B ∈ K: G−1(B) ∈M, G(A) ∈ K .
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4. We shall write
F−1(B) :=

⋃
f∈B

Lf

for B ∈ N . Suppose there exists some measurable A ⊂ Lf0 and g ∈ G such that

µf0(A) 6= µf0(τ−gA) , w.l.o.g. µf0(A) > µf0(τ−gA) .

Then the set Ã := G−1(G(A)︸ ︷︷ ︸
∈K

) satisfies Ã ∩Lf0 = A and

µf (Lf ∩ Ã) and µf

[
Lf ∩ τ−gÃ

]
are continuous in f . Thus there exists an open neighborhood Uf0︸︷︷︸

3f0

∈ N such that

µf

[
Lf ∩ Ã

]
> µf

[
Lf ∩ τ−gÃ

]
for all f ∈ Uf0 . But then

µ
[
τ−g

(
Ã ∩ F−1Uf0

)]
= µ

[
(τ−gÃ) ∩ F−1Uf0

]
=

∫
Uf0

µf

[
Lf ∩ τ−gÃ

]
dν(f)

ν(Uf0 )>0

<

∫
Uf0

µf

[
Lf ∩ Ã

]
dν(f) = µ

[
Ã ∩ F−1Uf0

]
.

Thus, µ is not τg-invariant.

3.7.2 Theorem about ergodic decompositions

Let (M,M, µ) be a metrizable, compact probability space with M = B(M). Let (τg)g∈G be a measure
preserving 1-parameter G-semi-flow on (M,M) and every τg : M → M continuous. Then there exists a
partition {Lf}f∈N (with (N,N , ν) a measure space) of (τg)-invariant sets Lf , each carrying an ergodic (τg)-
invariant measure µf , such that

µ(A) =

∫
N

µf (A ∩Lf ) dν(f) , A ∈M .

Proof: Use lemma A.3.4 and the Choquet Theorem A.3.6. See also [17].

Interpretation: Consider any dynamical system described by the symplectic manifold (M,ω) and the Hamilton-
flow

(
ϕtXH

)
t
. By theorem 3.3.3 the existence of a non-a.e.-constant

(
ϕtXH

)
-invariant function F : M → Rk (e.g.

the Hamiltonian H) usually31 implies the non-ergodicity of the system in M , as any leaf Lf := {F = f} would
be flow-invariant. But since the system evolves on some leaf Lf , which can be turned into a probability space,
the question of ergodicity on Lf remains open.

Lemma 3.7.1 shows that, given some equilibrium (i.e. flow-invariant) probability measure µf on each leaf
Lf := {F = f}, where usually F : M → Rn is a set of flow-invariants (i.e. integrals of motion), any probability
measure νRn among the leafs induces a new equilibrium probability measure µ on M as in eq. 3.7.1.1.

As a special case recall the microcanonical distribution, where F = H and ν = δE (see also [8]). If no other
integrals exist, the flow might as well be ergodic on LE under some suitable measure µE . In that case, it is
even ergodic in M to µ defined in eq. 3.7.1.1.

On the other hand, the decomposition theorem can be considered a justification for the analysis of properties
of ergodic (sub-)systems, as any equilibrium measure of a typical dynamical system admits the reduction of the
system to invariant, ergodic components. Often these components correspond to lower-dimensional sub-spaces,
as is the case for ergodic energy leafs in Hamiltonian, conservative systems.

31Actually depending on the measure imposed.
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3.7.3 Definition: Product space

Mechanical systems in nature can often be modeled as sets of independently evolving sub-systems, each one
described as a probability space (M i,Mi, µi), 1 ≤ i ≤ N with a G-semi-flow (τgi )g∈G. In order to investigate
such a system as a whole, we introduce the product space

(M,M, µ) :=

N⊗
i=1

(M i,Mi, µi)

equipped with the product σ-algebra

M :=
⊗
i

Mi := σ

({×
i
Ai : Ai ∈Mi

})
on

M :=×
i
M i

and the product probability measure µ.

In case of stochastically independent sub-systems, the measure µ :=
⊗

i µ
i is the uniquely defined probability

measure on (M,M) with
µ(×

i
Ai) =

∏
i

µi(Ai) , Ai ∈Mi .

The G-semi-flows (τgi )g∈G induce the product-G-semi-flow (τg)g∈G := (τg1 ⊗ · · · ⊗ τgN )g∈G on M defined by

τgx := τg1 ⊗ · · · ⊗ τgN (x) :=
(
τg1 x

1, .., τgNx
N
)
, x = (x1, .., xN ) ∈M .

Clearly, (τg) is µ-preserving, if an only if every (τgi ) is µi-preserving. The question arises, how ergodicity of the
sub-systems is connected to ergodicity of the whole.

3.7.4 Lemma about ergodicity in product spaces

Let (M i,Mi, µi) be (independent) probability spaces with the G-semi-flows (τgi )g∈G. Let (M,M, µ) the induced
product space with the induced G-semi-flow (τg)g∈G. If (τg) is ergodic, then all sub-flows (τgi ) are ergodic.

Note: The converse is not generally true! Consider for example two tori T 1 ∼= S1 with translation flows
(see section 4.2) τ ti ϑ := ϑ + t. Both systems are ergodic, but the product system is periodic on T 2 and thus
non-ergodic.

Proof: Let (τg) be ergodic and Ak ⊂Mk {τgk }-invariant for some k. Then clearly the set

A := M1 × · · · ×Mk−1 ×Ak ×Mk+1 × · · · ×MN

is (τg)-invariant, hence µ(A) = 0 or µ(A) = 1. But this implies µ(Ak) = 0 or µ(Ak) = 1.

3.7.5 Lemma: Connection between separable Hamilton functions and product spaces

Let (M,ω) be a symplectic manifold with symplectic coordinates q,p and Hamilton function with the structure

H(q,p) =

n∑
i=1

Hi(q
i,pi) ,

that is, separable into Hamilton functions depending on different, independent symplectic coordinate groups
qi,pi. Then the Hamilton flow is given by

ϕtXH = ϕtXH1
◦ · · · ◦ ϕtXHn . (3.7.5.1)
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Proof: It suffices to show that the flow in eq. 3.7.5.1 is actually a solution to

d

dt
ϕtXH = XH .

Since Hi depends only on qi,pi, it follows that XHi only contains entries at indices belonging to qi,pi. Con-
sequently, all other coordinates of ϕtXHi do not change with t, and thus

∂ϕtXHi
∂(q,p)

is the identity matrix except for entries for index combinations belonging to qi,pi. This implies

∂ϕtXHi
∂(q,p)

·
∂ϕtXHj
∂t︸ ︷︷ ︸
XHj

j 6=i
= XHj

which leads to

d

dt
ϕtXH1

◦ · · · ◦ ϕtXHn =
∂ϕtXH1

∂t︸ ︷︷ ︸
XH1

+
∂ϕtXH1

∂(q,p)
· d
dt
ϕtXH2

◦ · · · ◦ ϕtXHn

= XH1
+
∂ϕtXH1

∂(q,p)
·
∂ϕtXH2

∂t︸ ︷︷ ︸
XH2

+
∂ϕtXH1

∂(q,p)
·
∂ϕtXH2

∂(q,p)
· d
dt
ϕtXH3

◦ · · · ◦ ϕtXHn

= · · · = XH1 + · · ·+XHn−1 +
∂ϕtXH1

∂(q,p)
· · · · ·

∂ϕtXHn−1

∂(q,p)
· d
dt
ϕtXHn︸ ︷︷ ︸
XHn︸ ︷︷ ︸

XHn

= X∑
iHi

= XH .

Interpretation: The above proof makes evident, that the coordinates of any trajectory ϕtXH (q0,p0) can
be separated into coordinate groups

{
(qi,pi)

}
i
, in which (qi,pi) only depend on the initial (qi0,p

i
0). The

representation in eq. 3.7.5.1 is thus equivalent to the formalism introduced in section 3.7.3 about product
spaces, whereas the sub-flows, are exactly the

(
ϕtXHi

)
t
with regards to the i-th coordinate group.

Remarks
We have in this chapter introduced important concepts like ergodicity, mixing and denseness of trajectories
in phase-spaces. It is important to note that while ergodicity and mixing are measure-theoretic concepts,
denseness of trajectories and sensitive dependency on initial conditions are topological ones! The connection
between these two ideas is by no means trivial, and usually requires an additional structure, i.e. connection
between the topology and the measure space built upon it.
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4 Flows on manifolds
Due to their high level structure (e.g. Hausdorff topological, metrizability etc), manifolds allow a rich exploration
of the concept of ergodicity and topological characteristics of flows. As flows and observables are often continuous
or even smooth, a connection between their topological and measure-theoretical properties is much more easily
established.

In the following, the Lebesgue measure is naturally introduced on manifolds using given coordinates, while
all other measures will be characterized by their density with respect to the former. Following up, we examine
so called translation-flows on tori and link them to so called Liouville-integrable systems.

4.1 Measures on manifolds
4.1.1 Definition: Lebesgue-measure on C∞-manifolds

Let M be an n-dimensional C∞ manifold with atlas (ψi, Ui) (see [11] for notation). Then any chart (ψ,U)
(coordinates xi) locally induces the Lebesgue-measure λψ on (U,B(U))32

λx(B) := λψ(B) := λRn
(
ψ−1(B)

)
=

∫
ψ−1(B)

dnx

with the Lebesgue-measure λRn in (Rn,B(Rn)). For any other measure µ, locally absolute continuous to λx
with (local) density dµ

dλx
= ρ, we write

dµ = ρ dnx .

Note:

• All measures λx induced by some coordinates x are equivalent.

• The density ρx for a measure µ� λx with respect to λx is coordinate dependent! With respect to some
other coordinates y it takes the form

ρy = ρx ·
∣∣∣∣det

(
∂x

∂y

)∣∣∣∣ . (4.1.1.1)

• If λx is measure invariant but non-ergodic, there can not exist an ergodic measure µ� λx with dµ
dλx

> 0
λx-almost everywhere (see 3.3.8).

• If (M,ω) is symplectic and both coordinate sets xi, yi are symplectic, then ρx = ρy.

4.1.2 Notes on metrizability of manifolds

Any n-dimensional manifold M can be locally transformed into a metric space, such that the resulting open
sets are exactly the ones of its topology, as any chart ψ : U ⊂M → Rn (locally) induces the metric

dψM (x, y) := dRn(ψ(x), ψ(y))

on U . Since ψ and ψ−1 are continuous and bijective, open sets in U correlate uniquely to open sets in ψ(U)
and vice versa. This furthermore implies, that all chart-metrics are equivalent33 and that the denseness of any
set A ⊂M in U (e.g. trajectory {τg(x)}g), can be defined in any arbitrary chart-metric.

32Recall that any manifold is in particular a Hausdorff space.
33Two metrics d1, d2 in a metric space X are set to be equivalent, if the produce the same open sets.
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4.1.3 Measure-evolution under flows

Let M be a n-dimensional C∞-manifold, (ϕtX) the (semi)-flow belonging to a vector field X and µ0 an initial
measure on M . Then the flow induces the 1-parameter family of measures µt by:

µt := µϕtX .

The choice of specific coordinates xi often allows the representation of µt by a λx-density dµt
dλx

=: ρt. Since we
usually assume µt to be finite, ρt is finite λx-almost everywhere, thus w.l.o.g. we can assume ρt : M → [0,∞).
In the following we shall study the evolution of this density under flows.

4.1.4 Liouville’s Theorem

For the C1 density ρt(x) the following continuity equation holds:

∂ρt
∂t

(x) +
∑
i

∂(ρtX
i)

∂xi
(ϕtX(x)) = 0 .

Interpretation: The above equation can be compared to the known continuity equation encountered in fluid
dynamics, expressing the conservative transport of the probability density along the flow.

Proof: By definition the density ρt0+t is given by∫
A

ρt0+t dλ
!
= µt0+t(A) = µ[ ϕ−t0−tX (A)︸ ︷︷ ︸

ϕ
−t0
X (ϕ−tX (A))

] = µt0
[
ϕ−tX (A)

]
=

∫
ϕ−tX (A)

ρt0 dλ =

∫
A

∣∣∣∣det

(
∂ϕ−tX
∂x

)∣∣∣∣ · ρt0 ◦ ϕ−tX︸ ︷︷ ︸
ρt0+t

dλ .

Recall that the flow ϕ−tX preserves orientation, that is, its Jacobi-determinant is non-negative34. The partial
time derivative ∂ρt

∂t (t0) is thus given by

∂ρt
∂t

∣∣∣∣
x,t=t0

=
∂ρt0+t

∂t

∣∣∣∣
x,t=0

=
∂ρt0
∂xi

∂(ϕ−tX )i

∂t

∣∣∣∣
x,t=0︸ ︷︷ ︸

−Xi

·det

(
∂ϕ−tX
∂x

) ∣∣∣∣
x,t=0︸ ︷︷ ︸

det(Id)=1

+ρt0 ◦ ϕ−tX
∣∣
x,t=0︸ ︷︷ ︸
x

· ∂
∂t

det

(
∂ϕ−tX
∂x

) ∣∣∣∣
x,t=0

= −Xi ∂ρt0
∂xi

+ ρt0 ·
∂

∂t
det

(
Id−∂X

∂x
t+O(t2)

)
︸ ︷︷ ︸

1−t·trace( ∂X∂x )+O(t2)

∣∣∣∣
x,t=0

= −Xi ∂ρt0
∂xi

− ρt0 · trace

(
∂X

∂x

)
︸ ︷︷ ︸∑

i
∂Xi

∂xi

= −
∑
i

∂(ρt0X
i)

∂xi
.

4.1.5 Corollary to the Liouville-Theorem

1. The measure µt with density ρt is ϕtX -invariant if and only if∑
i

∂(ρtX
i)

∂xi
= 0 .

34Note that det

(
∂ϕtX
∂x

) ∣∣∣∣
t=0

= 1. Due to continuity of det

(
∂ϕtX
∂x

)
, would a negative value mean a zero value at some time tz

as well. But then det

(
∂ϕtX
∂x

)
= det

(
∂ϕtzX
∂x

)
︸ ︷︷ ︸

0

·det

(
∂ϕ
t−tz
X
∂x

)
= 0 ∀ t, a contradiction!
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2. If ∂iXi = 0 then

∂ρt
∂t

+Xρt︸ ︷︷ ︸
dρ
dt

= 0 , (4.1.5.1)

with the convective time-derivative dρt
dt of ρt along the trajectory of ϕtX .

Comparison: Since λx is an equilibrium measure, by the same argument as in the proof of theorem 3.3.4,
we have

ρt = ρ0 ◦ ϕ−tX
(in fact this holds even for non-continuous densities). Densities in a sense move along the flow and thus
remain constant for an observer moving along X.

4.1.6 Specialization for Hamiltonian flows

Consider the Hamilton-flow
(
ϕtXH

)
of the C1 Hamilton vector-field XH on the 2n-dimensional symplectic man-

ifold (M,dq ∧ dp) in symplectic coordinates q,p. The Hamilton equations

q̇i = ∂piH , ṗi = −∂qiH , i = 1, .., n

imply
2n∑
i=1

∂iX
i
H = 0 ,

thus resulting in the known Liouville-Equation

∂ρt
∂t

= − XHρt︸ ︷︷ ︸
dρ(XH)

= {H, ρt} =

n∑
i=1

[
∂H

∂qi
∂ρt
∂pi
− ∂H

∂pi
∂ρt
∂qi

]
.

As a special case consider ρ0 ≡ 1, which implies the invariance of the Lebesgue-measure λq,p to ϕtXH .

Figure 11: On the Hamilton-flow-invariance of the
Lebesgue-measure λq,p in Hamilton-systems. Notice the de-
formed, yet preserved volume of ϕtXH (A). Arrows represent
the vector-field XH .
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4.1.7 Lemma: Equilibrium densities for Hamilton flows

Let (M,dq ∧ dp) be a symplectic manifold with the Hamiltonian H, its induced vector-field XH and the
corresponding Hamilton-flow

(
ϕtXH

)
. Then:

1. The set of equilibrium probability λq,p-densities is convex.

2. If ρ, ζ are equilibrium λq,p-densities, then so are {ρ, ζ}, ρ · ζ.

3. Any C1-function ρ = ρ(H) is an equilibrium λq,p-density.

4. For equilibrium λq,p-densities ζ1, .., ζk, any function ρ = ρ(ζ1, .., ζk) is also an equilibrium λq,p-density.

Proof:

1. Follows directly from lemma A.3.4.

2. As we saw in section 4.1.6 about Hamilton flows, equilibrium densities are characterized by their involution
with H. Thus {H, ρ} = {H, ζ} = 0, consequently {H, {ρ, ζ}} = 0 and {H, ρ · ζ} = 0, which was to be shown.

3. Since H is flow-invariant, it follows:

{H, ρ} = −XHρ(H) = − d

dt
[ρ ◦H ◦ ϕtX︸ ︷︷ ︸

H

]
∣∣
t=0

= 0 .

4. Follows directly from

XHρ =
∂ρ

∂ζi
·XHζ

i .

4.1.8 Invariant measure on energy-leafs

Consider a dynamical system described by the (non-trivial) Hamiltonian H on the 2n-dimensional symplectic
manifold (M,dq ∧ dp) and the induced Hamilton-flow

(
ϕtXH

)
. As is well known, the Hamiltonian H is (τg)-

invariant, thus the leafs Lh := {H = h} are flow-invariant. Hence, the system can not be ergodic in M .
As already mentioned in lemma 3.7.1, a flow-invariant measure could indeed be introduced on the leaf Lh,

under which the flow might as well be ergodic. It turns out that, for any flow-invariant measure µ� λq,p with
continuous density dµ

dλq,p
, the measure

dµh =
dµ

dλq,p
· V h

‖∇q,pH‖
is flow invariant on Lh, where V h is the volume form induced by the q,p-Euclidean-metric35 on Lh. Actually:

µ(A) =

∫
R

µh(A ∩Lh) dλR(h) , A ∈M .

Note

• If Lh is compact, µh can be normed to be a probability measure.

• The measure µh (deduced from µ = λq,p) is exactly the well known microcanonical distribution often
encountered in classical statistical mechanics! In a sense, the flow-invariance of µh expresses the idea that
an equidistribution of the system on the leaf Lh, is a stable one.

35g :=

n∑
i=1

dqi ⊗ dqi +

n∑
i=1

dpi ⊗ dpi .
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Proof: In lemma A.2.2 set

g :=

n∑
i=1

dqi ⊗ dqi +

n∑
i=1

dpi ⊗ dpi

and compare to lemma 3.7.1. Note that

V h :=
√

det (g (∂ui , ∂uj )) · du2 ∧ · · · ∧ dun

is merely the volume-form on Lf induced by the volume-form dq1 ∧ · · · ∧ dpn.

4.2 Flows on the torus
The torus as a manifold is an important case of a dynamical system, since many manifolds are either diffeo-
morphic to the torus or can be decomposed to invariant tori. Tori with linear flows, form a great part of the
Liouville theory for integrable, Hamiltonian systems and KAM theory, which justifies the great attention given
to their study in the recent century.

4.2.1 The torus as a manifold

We identify the torus Tm = S1 × · · · × S1︸ ︷︷ ︸
×m

with the representation Tm ' Rm/Zm in standard coordinates

(ϑ1, .., ϑm) : Tm → [0, 1)m .

The induced Lebesgue-measure, given by
λTm(A) := λ [ϑ(A)]

is essentially the Lebesgue-measure λ within [0, 1)m, acting on the Borel σ-algebra on [0, 1)m.

      

!

Figure 12: The Torus T 2 in two different representations.

Furthermore, we consider the pull-back metric on the torus

dTm(x, y) := d (ϑ(x), ϑ(y))

induced by the Euclidean metric d in [0, 1)m. The torus Tm is thus a compact manifold, and with the Borel-σ-
algebra B(Tm) and probability measure λTm a strictly-positive probability space.

4.2.2 The translation group on the torus

Consider the measure preserving Rm-flow (τω)ω∈Rm on Tm, defined by

τω(ϑ) := ϑ+ ω =
(
(ϑ1 + ω1)mod1, .., (ϑm + ωm)mod1

)
.

We call this flow the translation group on Tm. For a fixed ω ∈ Rm this induces the R-flow (τ tω)t∈R on Tm,
defined as

τ tω := τt·ω
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and further the Z-flow (τnω)n∈Z defined as

τnω := (τω)
n

= τn·ω

In the last 2 cases, we call ωi the flow frequencies.

4.2.3 Theorem: Ergodicity of {τnω}
The following statements are equivalent[3]:

1. The flow (τnω)n∈Z is ergodic.

2. The flow (τnω)n∈Z is strictly ergodic, that is, the Lebesgue measure λTm is the only (τnω)-invariant probability
measure on Tm.

3. The numbers 1, ω1, .., ωm are rationally independent36.

4. Some (and thus every) future trajectory τN0
ω (ϑ) is dense in Tm.

5. Some (an thus every) trajectory τZω(ϑ) is dense in Tm.

Proof:

1→ 3: We shall follow the proof in [3]. Let q ∈ Zm such that
m∑
k=1

qkω
k = p

for some p ∈ Z. Then the function

f(ϑ) := exp

[
2πi

m∑
k=1

qkϑ
k

]
is τω-invariant, since

f(τωϑ) = exp

[
2πi

m∑
k=1

qk(ϑk + ωk)

]
= exp

[
2πi

m∑
k=1

qkϑ
k

]
· exp [2πip]︸ ︷︷ ︸

1

= f(ϑ) .

Since {τnω} is ergodic, f = const a.e., which implies q = 0.

3→ 1: By theorem 3.3.3 it suffices to show that every τω-invariant, bounded, L2-integrable function f : Tm → C
is a constant a.e. This function f can be expanded into a Fourier-series

f(ϑ)
‖·‖2=

∑
q∈Zm

Cq exp

[
2πi

m∑
k=1

qkϑ
k

]
.

The τω-invariance of f yields∑
q∈Zm

Cq exp

[
2πi

m∑
k=1

qkϑ
k

]
‖·‖2= f(ϑ)

= f(τωϑ)
‖·‖2=

∑
q∈Zm

Cq exp

[
2πi

m∑
k=1

qk(ϑk + ωk)

]
=
∑
q∈Zm

Cq exp

[
2πi

m∑
k=1

qkϑ
k

]
· exp

[
2πi

m∑
k=1

qkω
k

]
.

The uniqueness of the Fourier-coefficients implies

Cq = 0 ∨ exp

[
2πi

m∑
k=1

qkω
k

]
= 1︸ ︷︷ ︸

⇒ q·ω∈Z ⇒ q=0

∀ q ∈ Zm

and thus Cq = 0 for q 6= 0. But this essentially means f = const almost everywhere.
36Real numbers x1, .., xm are rationally independent :⇔ ∀ 0 6= k ∈ Qm : k · x 6= 0. Note that using Zm instead of Qm does not

change the definition.
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1→ 2: Holds by theorem 3.4.4, since λTm strictly positive and τω a measure preserving homeomorphism and
contraction (actually an isometry).

2→ 1: See 3.4.3.

1→ 4: By lemma 3.3.2 the semi-flow (τnω)n∈N0
is also ergodic. By theorem 3.3.6 this implies denseness of almost

every trajectory τN0ϑ.

4→ 5: Suppose τN0
ω ϑ0 is dense in Tm for some ϑ0 ∈ Tm. Now let ϑ ∈ Tm be arbitrary and U ⊂ Tm open.

Then Ũ := (ϑ0 − ϑ) + U is open as well, hence

τN0
ω ϑ ∩ U = τN0

ω (ϑ) ∩
(
Ũ + (ϑ− ϑ0)

)
= τN0

ω (ϑ) ∩ τϑ−ϑ0
(Ũ) = τϑ−ϑ0

[
τN0
ω (ϑ0) ∩ Ũ

]
︸ ︷︷ ︸

6=∅

6= ∅ .

Thus, every future trajectory is dense. Obviously this implies denseness of every trajectory τZω(ϑ).

5→ 3: As above, denseness of one trajectory implies denseness of all. Suppose for some 0 6= k ∈ Zm, q ∈ Z we
have k · ω = q. Then the continuous function Φ : Tm → C defined by

Φ(ϑ) := exp [2πi · k · ϑ]

is not constant, yet τω-invariant. Thus by lemma A.2.1 the flow (τnω) can not admit any dense trajectory
τZωϑ, as Φ would be constant on τZωϑ. [17]

An example: Reflecting sphere

Consider a perfectly reflecting hollow unit-sphere, inside it a trapped light beam, reflecting on the sphere’s
surface as described by Fermat’s principle. As the beam moves on a plane cross-section of the sphere, we might
w.l.o.g. consider the trajectory on the 2D-unit-ball. Clearly the reflection angle and thus the arc-difference
ω · 2π between consecutive reflections is constant, which admits a description of the beam’s path, or better, the
corresponding reflection points by the translation flow (τnω )n∈N0

.

Figure 13: Reflecting light beam inside sphere.

By theorem 4.2.3 we know that the beam’s reflection-path can be periodic (ω ∈ Q) as well as ergodic (ω /∈ Q). In
the later case the reflection points are dense in the circle’s boundary. In fact, from this can easily be concluded,
that the beam’s path is dense inside the outer-shell M , enclosed between the reflecting circle and the inner
circle (radius Ri = cosω) tangential to the beam (see fig. 14).
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Figure 14: Denseness of beam’s path in outer-most shell.

4.2.4 Theorem: Ergodicity of {τ tω}
The following statements are equivalent:

1. The flow (τ tω)t∈R is ergodic.

2. The flow (τ tω)t∈R is strictly ergodic.

3. The frequency vector ω is non-resonant, that is, the numbers ω1, .., ωm are rationally independent.

4. Some (and thus every) future trajectory {τ tω(ϑ)}t≥0 is dense in Tm.

5. Some (and thus every) trajectory τRω(ϑ) is dense in Tm.

Proof:

1↔ 2: Similar to theorem 4.2.3.

1↔ 3: See [17] section 4.2.3.

1→ 4: By lemma 3.3.2 the semi-flow (τ tω)t≥0 is also ergodic. By theorem 3.3.6 this implies denseness of almost
every future trajectory {τ tω(ϑ)}t≥0.

4→ 5: Trivial. Note that, similar to theorem 4.2.3, the denseness of one future trajectory implies the denseness
of all future trajectories.

5→ 3: Suppose ω is resonant, that is for some 0 6= k ∈ Zm we have k · ω = 0. Then the function

Φ(ϑ) := exp [2πi · k · ϑ]

is non-constant, (τ tω)-invariant and continuous on Tm. By lemma A.2.1, this implies that no trajectory
τRωϑ can be dense in Tm.

4.2.5 Lemma: Properties of ergodic translation-flows

1. If (τnω)n∈Z is ergodic, then all trajectories (τnω(ϑ))n are non-periodic37, that is

∀ ϑ ∀ n 6= 0 : τnω(ϑ) 6= ϑ .

2. If (τ tω)t∈R is ergodic, then all trajectories (τ tω(ϑ))t are non-periodic.

37In the special case of n ≤ 2 the converse is also true: If any trajectory is non-periodic, the flow is ergodic.
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Proof:

1. We first show that τnω 6= Id ∀ n 6= 0. Assume that τnω = Id for some n 6= 0. Then n ·ω = c for some c ∈ Zm,
where w.l.o.g. at least one ci 6= 0. Obviously, there exists 0 6= q ∈ Zm such that q · c = 0 and thus

q · ω =
1

n
q · c = 0 .

Therefore, 1, ωi are not rationally independent, thus the flow is non-ergodic. Now consider individual tra-
jectories. Let n 6= 0, then ∃ ϑ0 : τnω(ϑ0) 6= ϑ0. But then for any ϑ:

τnω(ϑ)
def.
= τn·ω(ϑ) = τn·ω ◦ τϑ−ϑ0

(ϑ0) = τϑ−ϑ0
◦ τn·ω(ϑ0)︸ ︷︷ ︸

6=ϑ0

τϑ−ϑ0
bijective
6= τϑ−ϑ0

(ϑ0) = ϑ .

2. Analogous to 1.

4.2.6 Notes on translation flows of the torus

We saw that ergodicity of the flows (τ tω) and (τnω) is characterized by the flow frequency vector ω and (1,ω)
respectively. In case of rationally dependent (resonant) ωi (or 1, ωi in the case of (τnω)), the torus Tm decomposes
into a family of sub-tori T k, 1 ≤ k < m, restricted to which the flow is again strictly ergodic[15].

As the non-resonant frequency vectors ω ∈ Rm have full Lebesgue measure38 in Rm, in a sense, almost all
flows are strictly ergodic on Tm! It can be shown nonetheless, that the set of resonant frequencies ω ∈ Rm is
dense in Rm.

However, the systems (Tm,B(Tm), λTm , (τ
t
ω)) and (Tm,B(Tm), λTm , (τ

n
ω)) can never be mixing!

4.3 Flows on Liouville-integrable systems
4.3.1 Identification with the torus

Consider a dynamical system described by the 2m-dimensional symplectic manifold (M,ω), Hamilton function
H ∈ C∞ and Hamilton flow

(
ϕtXH

)
. Now let F1, .., Fm be functionally independent, commuting functions, that

also commute with H (integrals or constants of motion).39
We then know from Liouville’s theorem (see [7]) that the leaf Lf := {F = f} (w.l.o.g. pathwise connected)

is diffeomorphic to the cylinder T k ×Rm−k for some k = 1, ...,m and that H = H(F). Furthermore there exist
standard coordinates ϑ1, .., ϑm on Lf (that is, ϑ1, .., ϑk cyclic), such that in these coordinates the Hamilton-
flow40 takes the form

ϕtXH (ϑ) = ϑ+ ω · t , ω = ω(f) .

Recall that the very existence of such an invariant F precludes the ergodicity of
(
ϕtXH

)
inM or (for m ≥ 2) even

the energy leaf {H : const} (at least with respect to measures equivalent to the Lebesgue-measure)! Nonetheless,
the restriction of the flow on Lf (which actually describes the evolution of the system) might very well be ergodic!

In the special case that the leafs are compact in some neighborhood of f0 (which holds for many physical
systems), these leafs are actually diffeomorphic to the torus Tn ' Lf , and there exist symplectic coordinates
s,ϑ, (called action-angle variables) such that F = F(s) and ϑ cyclic as above on every Lf ! This ensures that
the flow actually describes a conditionally periodic motion on the torus as described in section 4.2, for which the
question of ergodicity has already been answered! Indeed, the frequencies ω(s) = ∂H

∂s (s) are solely dependent on

38Recall that the set of all ω ∈ Rm with rational dependent components is⋃
0 6=k∈Zm

k⊥ ,

hence a countable union of λRn -nullsets.
39We call such a system Liouville Integrable. See [7].
40Since H = H(f), the flow {ϕtXH } stays on the leaf Lf .
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the torus considered, and allow for periodic as well as non-resonant solutions. If furthermore, the Hamiltonian
H is generic in some neighborhood U︸︷︷︸

open

×Tm, that is

det

(
∂ω

∂s

) ∣∣∣∣
U×Tm

= det

(
∂2H

∂s2

) ∣∣∣∣
U×Tm

6= 0

then λRm -almost every torus in that neighborhood will be non-resonant, whereas the resonant tori will be dense
in U × Tm.[20]

We shall briefly consider a few examples of Liouville-integrable systems.

4.3.2 Harmonic oscillators

Consider n independent, harmonic oscillators, each described by the Hamilton function

Hi(qi, pi) =
ω2
i

2
q2
i +

1

2
p2
i

in symplectic coordinates q,p. By lemma 3.7.5, examining the joint-system described by

H =

n∑
i=1

Hi

is equivalent to examining it as a product of independently evolving sub-systems. Since Hi : const, each sub-
system moves at constant angular velocity about the torus41 T 1 ' {Hi : const} with the action-angle variables
si, ϑi:

si = −
∮

Hi(qi,pi):const

pi dqi =
Hi

πωi

2π∫
0

sin2 ϑ dϑ = 2π
Hi

ωi

ϑi =

q∫
q0

∂pi(s
i, q̃i)

∂si
dq̃i =

ω

2π

q∫
q0

dq̃i√
2ωsi − ω2

i q̃
2
i

w.l.o.g
q0=0
=

1

2π
arcsin

[
ωiqi√
2Hi

]


⇒


qi =

√
si

πωi
sin
(
2πϑi

)

pi =

√
siωi
π

cos
(
2πϑi

) ,

ϑ̇i =
∂Hi

∂si
=
ωi
2π

→ ϕtXHi
(ϑi, si) =

(
ϑi +

ωi
2π
t, si

)
.

Consequently, the whole system moves on an n-dimensional sub-manifold diffeomorphic to Tn ' {H : const},
whereas the restriction of the flow {

ϕtXH
}

:=
{
ϕtXH1

⊗ · · · ⊗ ϕtXHn
}
t∈R

on Tn is exactly the translation flow considered previously in section 4.2.2 with flow frequencies ωi acting upon
ϑ.

If any of the conditions in 4.2.4 are met, all trajectories of the system will be dense on the leaf {H : const}.
Recall that this denseness can be understood in some arbitrary metric like dϑTn or dqTn (see 4.1.2). Figure 15
displays two arbitrary flows for different ω.

41Recall that for 2n-dimensional (symplectic) dynamical systems with n independent integrals Fi, with {Fi, Fj} = 0, each leaf
Lf := {F = f} (if compact) is diffeomorthetac to the torus Tn. There exist moreover symplectic coordinates ϑ, s such that s = s(F),
s
∣∣
Lf

: const and H = H(s).[7]
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Figure 15: The evolution of two harmonic oscillators (ar-
bitrary units), in standard-torus representation as well as
q-coordinates, in the periodic and ergodic case. Note that
only a fraction of the whole trajectory is displayed in the
ergodic case.

Note that even though the denseness of the system-orbit is a coordinate-invariant property, the actual measure
to which the flow is ergodic has a different representation (that is, different densities with respect to the induced
Lebesgue-measures) in the two coordinate systems ϑ and q:

ρq = ρϑ ·
∣∣∣∣det

(
∂ϑ

∂q

)∣∣∣∣ ρϑ≡1
=

∏
i

∣∣∣∣∂ϑi∂qi

∣∣∣∣
w.l.o.g
2Hi

ω2
i

=1

=
∏
i

1

2π
√

1− q2
i

.

Since the flow is actually strict ergodic (see 4.2.4), this measure is also the only equilibrium probability measure
of the system! In a sense, oscillators tend to be at their maximal swing-states (compare to fig. 15).

4.3.3 Bowl-travel

Consider a point-particle with unity mass sliding frictionless around the surface of a spherical bowl (radius 1)
under influence of gravitational force.

1

1

 

Figure 16: Particle sliding along a spherical bowl.

In symplectic coordinates α,p the Hamiltonian takes the form

H(α1, α2, p1, p2) =
1

2

[
p2

1 +
p2

2

sin2 α1

]
+ (1− cosα1) · g︸ ︷︷ ︸

U(α)

, p1 := α̇1 , p2 := α̇2r
2 .
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The system admits the integrals H and p2. Since any leaf LE,P := {H = E, p2 = P} (we shall consider only
the case H, p2 > 0) is compact, the system’s evolution is restricted to a Torus T 2 ' LE,P .

Thus the system undergoes a conditionally periodic evolution, identifiable with a translation-flow around
the torus. From section 4.2 we know, that there exist periodic solutions as well as ergodic42, depending on E, g
and P . Trajectories belonging to the later are dense within LE,P ! Since the natural projection

(α,p)
Π7→ α

is continuous on LE,P , the trajectory-projection of the system (that is, the spatial-trajectory of the particle) is
dense within the (compact43) projection Π(LE,P ).44

Figure 17: Natural projection of LE,P in standard repre-
sentation. The trajectory of the particle is bounded within
that more or less narrow band along the bowl and condition-
ally periodic.

4.4 Flows on nearly Liouville-integrable systems
As we saw above, the phase-spaces of Liouville-integrable systems are composed of flow-invariant tori, on
which the flow is, depending on the Hamiltonian H(s), conditionally ergodic. The question arises, as to how
perturbation-resistant this structure is, that is, as to wether these resonant or non-resonant orbits cease to exist
upon some arbitrarily small modification of the Hamiltonian. Until the fifties it was actually a common belief
that arbitrarily small perturbations could destroy these invariant tori and result in an ergodic flow on each
energy leaf[2]. This ergodic hypothesis was disproved by Kolmogorov in 1954 and later on by Arnold and Moser
in the 1960s. The resulting set of theorems and applications is now known as KAM theory, named after its
founders. See also [30].

4.4.1 Definition: Diophantine vectors

A vector ω ∈ Rm is called (κ, λ)-Diophantine if, for some 0 < κ and λ ≥ m− 1 it satisfies

|ω · k| ≥ κ
‖k‖λ1

∀ k ∈ Zm \ {0} .

Here ‖k‖1 :=
∑m
i=1

∣∣ki∣∣.[18]
Notes:

• Every Diophantine ω vector is non-resonant, that is, ω1, .., ωm are rationally independent.

• Denote by Dmκ,λ the set of all (κ, λ)-Diophantine vectors and Dm :=
⋃
κ,λ
Dmκ,λ. Then Dm = Rm(mod0).

42Recall that for the translation flow on T 2, ergodicity is equivalent to non-periodicity.
43Continuous images of compact sets are compact.
44Recall that for any set A dense in T and continuous f : T → K, the image f(A) is dense in f(T ) .
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4.4.2 Arnold’s theorem

Consider the Liouville-integrable Hamiltonian H(s) on the 2m-dimensional symplectic manifold (M,dϑ ∧ ds)
in action-angle variables s,ϑ and the 1-parameter family of nearly-integrable Hamiltonians

Hε(ϑ, s) := H(s) + ε · P (ϑ, s) ,

with H and the perturbation P real-analytic in some neighborhood M̃ ' U︸︷︷︸
⊂Rm
×Tm of the leaf Ls0 := {s = s0}.

Let
ω :=

∂H

∂s

∣∣∣∣
s0

∈ Dm

be the frequency vector of the unperturbated flow on Ls0 and H generic in M̃ , that is,

det

(
∂2H

∂s2

) ∣∣∣∣
M̃

6= 0 .

Then for |ε| small enough, there exists a real analytic embedding45

Ψs0,ε : Tm → M̃

close to the trivial embedding (Id, s0), such that the torus L ε
s0 := Ψs0,ε(T

m) is flow-invariant for Hε and

ϕtXHε ◦Ψs0,ε(ϑ) = Ψs0,ε(ϑ+ t · ω) .

Thus, the torus Ls0 is only slightly deformed to L ε
s0 while its non-resonant flow is preserved!

See also [13],[14] and [18].

Note: It can even be shown, that for |ε| small enough, an arbitrary big (in Lebesgue-measure λϑ,s) measurable
set Vε ⊂ M̃ exists, such that any trajectory starting from (ϑ, s) ∈ Vε is quasi-periodic.[14],[19]. Poincaré
furthermore showed, that only finitely many periodic trajectories would survive a perturbation, the rest resulting
in chaotic behavior. Thus a dense set of tori is typically destroyed. Alternatively, dropping the assumption of
non-degeneracy of H, could destroy all tori and result in ergodic behavior on each energy leaf.[15]

Interpretation: This theorem completely opposes the notion that generic, multi-dimensional nonlinear Hamil-
tonian systems are ergodic. Most of the invariant tori are preserved provided the perturbation is sufficiently
small, and the system is (conditionally) ergodic only on the deformed tori L ε

s,ϑ. Returning back to example
4.3.3, a sufficiently small deformation of the bowl would qualitatively preserve most of the trajectories, which
will as a rule only slightly change, still being dense on the invariant leaf.

Figure 18: Slightly deformed bowl. Most non-resonant tra-
jectories undergo only minor deviations from their original
form and remain dense on the deformed leaf L ε

s,ϑ.

Proof: See [7] and [16].

45An embedding f : T → K between to topological spaces T,K is any continuous, injective map. In the context of C∞-manifolds
an embedding is diffeomorphic to its image.
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5 Billiards
An important concrete dynamical system studied in ergodic theory by mathematicians and physicists as well, is
the so called billiard. The system basically consists of a single point-particle, moving freely at constant speed 1
within some bounded region, bouncing of at the boundary under the law incidence angle equals reflection angle.
Questions about existence of periodic solutions, invariant set, denseness of trajectories and in general ergodicity
of this system are of great theoretical and even practical importance, as billiards can be used to model many
physical systems (e.g. free particles within a box).

One example note-worthy is the Lorentz-gas, which tries to model freely moving electrons bouncing of at
heavy ions, as billiards within some domain with a number fixed, non-intersecting balls removed.[25]

Furthermore, many other problems, like systems of N absolutely elastic spheres in some compact domain
⊂ Rn, can be reduced to billiards in some domain of Rn·N [3]. This diversity of applications makes the analysis
and classification of billiards an interesting and promising subject.

5.1 Construction of Billiards
5.1.1 Definition: Billiard table

Let (M, g) be a n-dimensional, pathwise-connected, compact Riemann manifold with non-degenerate smooth
boundary46 ∂M and X the vector-field corresponding to the geodesic flow on the tangent-bundle TM47. By
construction of the geodetic flow, the unit-tangent-bundle

BM := {(q, v) ∈ TM : g(v, v) = 1}

is flow invariant, that is, X ∈ TBM . The system
(
BM , X

∣∣
BM

)
shall be called a billiard table with smooth

boundary.
Define the natural projection Π : BM →M by Π(q, v) = q, then

∂BM = Π−1(∂M) = {(q, v) ∈ BM : q ∈ ∂M} .
Now consider the reflection-map R : ∂BM → ∂BM defined by

R(q, v) := (q, v − 2 · g(ηq, v) · ηq) ,

whereas ηq denotes the inner-normal-unit-vector to Tq∂M . For v ∈ TqM we shall sometimes write Rv :=
v − 2 · g(ηq, v) · ηq. Note that R−1 = R.

Figure 19: On the definition of billiard tables and the re-
flection map. Notice the connection between R and the usual
principle incidence angle equals reflection angle.

46We call a subset M ⊂ M0 of a n-dimensional Riemann manifold (M0, g) a compact Riemann-manifold with smooth, non-
degenerate boundary if M can be written as

M = {q ∈M0 : f ≥ 0}
for some f ∈ C∞(M) such that M is compact and grad f 6= 0 on ∂M = f−1(0).

47One can introduce the geodesic flow on TM as the flow corresponding to the vector field

X(q,v)
∼=
(
v1, .., vn,−Γ1

krv
kvr, ..,−Γnkrv

kvr
)

in some coordinates x1, .., xn and ∂1, ..., ∂n ∈ TxM . Note that this flow is equivalent to the flow in T ∗M with respect to the
Hamiltonian H(q, p) = g̃q(p, p) under the transformation p = Jv.
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We shall call the billiard-table proper, if for all x ∈ BM the geodesic ϕtXx is incomplete in both time-directions,
that is, ϕtXx reaches the boundary ∂BM within a finite (positive and negative) time |t| <∞. From now on, we
assume all billiard-tables to be proper.[3]

5.1.2 Construction of the billiard flow

We shall now construct an R-flow (τ t)t∈R on BM as follows:

• For any point (q, v) ∈ BM set τ t(q, v) := ϕtX(q, v) to be the geodesic flow with respect to the proper-time
t, for as long as ϕtX(q, v) is defined (that is, until ϕtXx reaches ∂BM ).

• For any point (q, v) ∈ ∂BM with g(ηq, v) < 0 (v pointing outwards) set τ t(q, v) := τ t ◦R(q, v) for as long
as it is defined, that is, reflect the ball and follow the flow in the new direction. Note that R(q, v) faces
inwards and since the boundary is non-degenerate, its future flow is defined at least for some positive
time.

• Complete the constructed semi-flow for each point by the rule τ t1+t2 := τ t1 ◦ τ t2 . Since τ t is bijective,
complete the flow into negative times τ−t := (τ t)−1.

We call this R-flow billiard flow on M and the projection Π(τRx) of a trajectory the spatial trajectory in M .[3]

Figure 20: On the definition of the billiard flow.

Note: Actually, there exists the possibility that some point is reflected on the boundary infinitely often within
a finite time. Though in such cases the flow is not defined beyond that finite time, we will later on show that
in the defined constructed measure, these pathological points form a null-set (5.1.5).

5.1.3 Construction of an invariant measure

Define x− ∈ ∂BM to be the previous reflection point of x ∈ M , that is x = τ txx− for some minimal tx > 0.
Since the billiard table is proper, x− always exists. The association x 7→ (tx, x

−) is bijective, thus we can
introduce new coordinates in BM by using the already existent coordinates in ∂BM and the time tx needed to
get from ∂BM up to the given point.

 

Figure 21: On the definition of time-boundary coordinates.
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Let V ∂M be the volume-form induced by the metric g on ∂M and V S
n−1

q the standard volume form48 on the
unit-circle Sn−1

q := {v ∈ TqM : g(v, v) = 1}. Then

dµ∂BM(q,v) := |g(nq, v)| · V ∂Mq ∧ V Sn−1

(q,v)

defines a measure on the billiard-boundary ∂BM . Finally, define the volume-form (measure)

dµx := dtx ∧ dµ∂BMτ−txx (5.1.3.1)

on BM . It turns out

dµ = VM ∧ V Sn−1

, (5.1.3.2)

where VM is the volume form induced by g in M , and that µ is actually (τ t)-invariant (see [3]).

Example: For M ⊂ Rn the volume form V ∂M corresponds merely to the Lebesgue-measure of the (n − 1)-
dimensional surface ∂M and V S

n−1

to the (n− 1)-dimensional solid-angle-measure. Similarly, VM corresponds
simply to the Lebesgue-measure in M .

Note: Since both µ and µ∂BM are finite, they can be turned into an invariant probability measures

µ̃ :=
1

µ(BM )
· µ , µ(BM ) = volVM (M) · vol(Sn−1)︸ ︷︷ ︸

standard
unit-sphere
surface
volume

,

µ̃∂BM =
1

µ∂BM (∂BM )
· µ∂BM , µ∂BM (∂BM ) = volV ∂M (∂M) · vol(Bn−1

1 ) ,

whereas Bn−1
1 is the unit-ball49 in Rn−1.

5.1.4 The return map

In direct analogy to the Poincaré return map (3.1.6), define the inward-boundary

∂B+
M := {(q, v) ∈ ∂BM : g(nq, v) > 0}

and set for (q, v) ∈ ∂BM the reflection time r(q, v) > 0 as the minimum time needed to get (or return) to ∂B+
M .

The set of points with v ∈ Tq∂M are clearly a µ∂BM -nullset, so that r(q, v) is a.e. well defined. Finally, define
the return map R(x) := τ r(x)x.

Notes:

• It can be shown, that R preserves the measure µ∂BM on ∂B+
M (see [3]).

• Consider the case M ⊂ R2: Topologically ∂B+
M is a cylinder, with cyclic coordinate s the arclength of the

boundary ∂M and axis coordinate the angle α ∈ [0, π] characterizing every inward turned unit-vector.

48Choose some orthonormal basis b1, .., bn in TqM and associate Sn−1
q by the resulting coordinates with the unit-circle Sn−1 in

Rn.
49Note that∫

Sn−1

|g(η, v)|V S
n−1 w.l.o.g.

=

1∫
−1

dx1 |x1| voln−2

(
∂Bn−1√

1−x21

)
=

1∫
0

du · voln−2

(
∂Bn−1√

1−u

)
= voln−1(Bn−1

1 ) .
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Figure 22: On the topology of the inward-boundary ∂B+
M .

5.1.5 Lemma about pathological points

Denote by T the set of points in M that are reflected infinitely often within a finite time. Then µ(T) = 0.

Proof: We shall elaborate on the proof in [3]. Let r(x) be the time until the next reflection on ∂BM , that is,
τ r(x)x ∈ ∂BM for some minimum r(x) ≥ 0. Clearly, if x = τ tx(x−) ∈ T then so is τ t(x−) for all 0 ≤ t ≤ r(x−).
Thus

µ(T) =

∫
T∩∂B+

M

r(x−) dµ∂BM .

Since r(x−) > 0 for µ∂BM -almost all x− ∈ ∂B+
M , by corollary A.3.1

∞∑
n=0

r
(
Rnx−

)
=∞

for µ∂BM -almost all x− ∈ ∂B+
M . But on the other side, T ∩ ∂B+

M are exactly those x− ∈ ∂B+
M for which∑∞

n=0 r (Rnx−) remains finite. Thus µ(T) = 0.

5.1.6 Lemma: Mean free path of a billiard

Let BM be a billiard table with the billiard flow (τ t) and r : ∂BM → (0,∞) the reflection time map (see 5.1.4).
Then

〈r〉∂BM :=

∫
∂BM

r dµ̃∂BM =
volVM (M) · vol(Sn−1)

volV ∂M (∂M) · vol(Bn−1)
.

(see also [21]).

Interpretation: Since we assumed the speed of a billiard to be 1 (g(v, v) = 1), the time r(q, v) needed until
the next reflection, is simply the free path of a billiard bouncing of from the boundary q ∈ ∂M with direction
v. This lemma thus points out the surprising fact that, the mean free path of billiards only depends on the
volumes of the table and its boundary! Specifically for M ⊂ R2 this yields the known Santalo formula[22]

〈r〉∂BM =
π ·Vol(M)

Vol(∂M)
.
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Figure 23: On the definition of the mean free path.

Note that in case of an ergodic billiard-flow on a billiard-table with r bounded, for almost any start-point
x ∈ ∂BM we have

lim
n→∞

1

n

n−1∑
k=0

r (Rnx) = 〈r〉∂BM

(see theorem 3.3.6).

Proof: ∫
∂BM

r(x) dµ̃∂BM =
1

volVM (∂M) · vol(Bn−1
1 )

·
∫

∂BM

r(x)︸︷︷︸
r(x)∫
0

dt

dµ∂BM

(5.1.3.1)
=

1

volVM (∂M) · vol(Bn−1
1 )

·
∫
BM

dtx ∧ dµ∂BMτ−txx︸ ︷︷ ︸
dµ

=
volVM (M) · vol(Sn−1)

volV ∂M (∂M) · vol(Bn−1)
.

5.2 Billiards in ellipses
We shall in the following section consider the ellipse

Ec :=
{
q ∈ R2 : d(q, F1) + d(q, F2) ≤ c

}
in R2 (standard metric) with foci at points F1, F2 and the induced billiard-table BEc with billiard flow (τ t).50

Figure 24: Ellipse with foci F1, F2.

50See also [3] and [4].
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5.2.1 Proposition: Convergence of focal trajectories in ellipses

For all (q, v) such that q ∈ {F1, F2}, the sequence of reflection points of the spatial trajectory {Πτ t(q, v)}t≥0

on ∂Ec can be decomposed into two sequences, each converging to one of the points a1, a2. Put simply, the
trajectory of any billiard starting at a focus, converges towards the major axis (see fig. 25).

Figure 25: On the convergence of focal billiard trajectories
towards the major axis.

Interpretation: This result might seem odd at first, since the recurrence mapR preserves the strictly positive,
finite measure µ∂BEc , thus by corollary 3.1.4 one would expect that almost all reflections repeat themselves
arbitrarily accurately. But indeed, the set of all reflection points (q, v) ∈ ∂BEc leading to a transition through
a focus, has measure zero.

Note that due to symmetry, the same statement can be made about the history trajectory! Focal trajectories
converge to the major axis with t→∞ as well as t→ −∞.

Proof: W.l.o.g. let d(F1, F2) > 0 (otherwise all focal trajectories are fixed). W.l.o.g. we shall show the
proposition for all trajectories passing through F1 at time t = 0. For this proof, we shall identify each incoming
direction v of some (q, v) ∈ Π−1(F1) with the angle ϕ between v and the positively oriented major axis (see fig.
24).

By lemma A.2.3 we know that billiards starting at a focus, reflect on the boundary and then pass through
the other focus! Thus for every (q, v) ∈ Π−1(F1) we can define a mapping Φ : S1

F1
→ S1

F1
mapping the incoming

direction of a billiard at F1 (characterized by the angle ϕ ∈ [0, 2π)) to the next incoming direction at F1, after
being reflected two times at ∂Ec (see fig. 26).

Figure 26: On the definition of Φ : S1
F1
→ S1

F1
.

From fig. 26 it is clear, that Φ : (0, π/2]→ (0, π/2] is strongly monotonically decreasing and continuous. Thus
for any direction ϕ ∈ (0, π/2] the sequence (Φnϕ)n is strongly monotonically decreasing and bounded below by
0, thus convergent. Further

Φ
[

lim
n→∞

Φnϕ
]

= lim
n→∞

Φ(Φnϕ) = lim
n→∞

Φnϕ ,

that is, the limes is a fixed point of Φ. But this can only hold for lim
n→∞

Φnϕ = 0, hence any incoming direction
ϕ ∈ [ϕ0, ϕ1] = [0, π/2] leads to convergence of the subsequent reflection points towards the major axis.

Now suppose all directions coming from [0, ϕn], π
2 ≤ ϕn < π subsequently lead to trajectories converging

towards the major axis. Then this holds even for some bigger interval [0, ϕn+1] (whereas directions within
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[0, ϕn+1] after 2 reflections lead to directions coming from [0, ϕn]), with ϕn+1 > ϕn given by

π − ϕn+1 = Φ(π − ϕn)

(see fig. 27).

Figure 27: On the extension of convergence directions.
Convergent of directions coming from [0,±ϕn] implies con-
vergence of directions coming from an even bigger interval
[0, ϕn+1].

Thus, we can construct some (monotonically increasing) sequence (ϕn)n ⊂
[
π
2 , π

]
such that for any n ∈ N,

directions coming from [0, ϕn] lead to convergence, and π − ϕn+1 = Φn(π − ϕ1). But, as we saw above

lim
n→∞

(π − ϕn+1) = lim
n→∞

Φn(π − ϕ1︸ ︷︷ ︸
∈[0,π2 ]

) = 0 ,

hence ϕn
n→∞−→ π. The case ϕ ∈ π is trivial and symmetry of the problem implies that the above holds for

ϕ ∈ [π, 2π] as well, hence, the proposition is proved.

5.2.2 Proposition: Restriction of non-focal trajectories in ellipses

Let ΠτRx ∼= . . . q1q2q3 . . .︸ ︷︷ ︸
reflection
points

be a configurational trajectory of the billiard flow in Ec that does not pass through

any of the foci F1, F2. Then either all segments qiqi+1 are tangent to one and the same ellipse Ed (with foci
F1, F2) or all segments qiqi+1 (i.e. their extensions) are tangent to one and the same hyperbola Hd (with foci
F1, F2).[3]

Figure 28: Restriction of non focal spatial trajectories out-
side some ellipse Ed or inside some hyperbola Hd.

Proof: Let q1qq2 be consecutive reflection points on ∂Ec. By lemma A.2.3 we know that either both q1q and
qq2 or none of them intersect the segment F1F2. Consider the first case, and construct two ellipses Ec1 , Ec2 with
foci F1, F2 such that the segments q1q, qq2 are tangent to ∂Ec1 , ∂Ec2 on the points p1, p2 respectively.

It suffices for the proposition to show that c1 = c2, i.e. both segments are tangent to one and the same
ellipse. Reflect the foci F1, F2 on the segments q1q and qq2 respectively to obtain the reflections F ′1, F ′2 (see fig.
29).
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Figure 29: On the proof of proposition 5.2.2.

Then, since p1 ∈ F2F ′1 (see proof of lemma A.2.3), we have

c1 = d(F1, p1)︸ ︷︷ ︸
d(F ′1,p1)

+d(F2, p1) = d(F2, F
′
1)

and similarly c2 = d(F1, F
′
2). Furthermore, since the configurational trajectory F1qF2 would be valid, the angles

F̂1qq1, F̂2qq2 are equal (reflection angle axiom). Since F̂1qq1 = q̂1qF ′1 and F̂2qq2 = q̂2qF ′2 it follows

F̂2qF ′1 = F̂1qF ′2

(see fig. 30).

Figure 30: On the proof of proposition 5.2.2.

Moreover, d(F ′1q) = d(F1, q) and d(F2, q) = d(F ′2q), consequently the triangles F ′1qF2 and F1qF
′
2 are equal,

hence
c1 = d(F2, F

′
1) = d(F1, F

′
2) = c2 .

In case where q1q and qq2 intersect the segment F1F2, considering the hyperbolas Hc1 ,Hc2 allows for the same
arguments.

5.2.3 Corollary: Non-ergodicity of ellipse-billiards

For any ellipse Ec (foci F1, F2, c > d(F1, F2)), the billiard flow on BEc is non-ergodic.

Elaboration: Proposition 5.2.2 shows that, almost all trajectories are restricted to invariant null-sets of the
type {

(q, v) ∈ BEc : Π
(
τR(q, v)

)
tangent to ∂Ed (∂Hd)

}
for some d. The proof made actually evident, that even the spatial trajectories Π(τR(q, v)) are nowhere near to
being dense in Ec (see fig. 28)!
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Proof: For any d(F1, F2) < c1 < c2 ≤ c the set{
(q, v) ∈ BEc : Π

(
τR(q, v)

)
tangential to some ∂Ed, c1 ≤ d ≤ c2

}
is billiard-flow-invariant and has positive, non-full measure.
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6 Summary
In this paper, we introduced and examined so called group-flows on measurable phase spaces, vis-á-vis classical
Hamiltonian flows on symplectic manifolds. Statistical uncertainty, a feature with which many a natural scientist
is confronted when performing experiments, is abstracted by probability measures introduced on the phase spaces
of the systems. We concentrate on so-called equilibrium distributions, that is, probability measures invariant
under the flow describing the time-evolution of the system.

One of the first fruits of ergodic theory was the Poincaré recurrence theorem, securing virtually unconditional
recurrent behavior in a big class of dynamical systems, especially those in statistical equilibrium. It was shown
that, following from this theorem, Hamiltonian trajectories become arbitrary close to repeating them selves,
provided the measure meets certain compatibility conditions with the existent topology of the space. Even though
the Poincaré theorem provides no estimation for return-times, it nonetheless constituted an important finding,
leading to hot debates regarding the irreversibility of natural processes, as prescribed by thermodynamical
laws[23].

An important milestone was the Birkhoff-Khinchin ergodic theorem, securing the existence (a.e.) of time-
averages along trajectories, thus providing a justification for the practice of time-averaging conducted in common
experiments. One elegant result of this theorem is the intuitively already suspected connection between the
sojourn-time of a trajectory within a set A and its measure µ(A).

Yet, the theorem does not provide any connection to the so sought-after phase-average, which turns out to be
a non-trivial property of only a special kind of systems, namely ergodic ones. These systems are exactly those,
whose flow does not admit the existence of invariant sets other than the space its self (mod0) or nullsets. Ergod-
icity is to be taken as a purely measure-theoretic characteristic of the flow within the phase-space, inevitably
depending on the probability distribution assumed. A connection to the topology is in general only existent,
if the measure its self exhibits a certain connection to the former. It was shown, that in most mainstream
spaces, ergodic flows produce dense trajectories and that non-null-sets actually fill up the entire space under
the action of the flow. Furthermore, it was demonstrated that ergodicity is invariant under equivalent measures
and metrically isomorphic systems.

An important result in this paper, is the generalization of the Krylov-Bogoliubov-theorem, manifesting the
existence of invariant and even ergodic probability measures, for continuous time-flows on compact, metric
spaces. However, these may lack any physical meaning, and may not even be realized in usual experimental
setups. In connection, the stronger concept of strict-ergodicity is briefly introduced, expressing the uniqueness
of equilibrium probability distributions in certain systems, leading to an even richer family of characteristics,
such as the uniform convergence of time- to phase-averages.

Following up, the promising concept of mixing is introduced, a property showing a lot of similarities with the
behavior of many complex physical systems. It expresses the notion, that sets of states are under the system’s
flow, whirled around the phase space, seemingly getting dispersed as time passes. In case of strictly positive,
topological measure spaces, mixing systems show a sensitivity on initial conditions, typically found in chaotic
systems. It turns out, that systems described by a certain kind of relaxation tendency, are actually mixing, thus
promising the presence of the mixing property in a wide class of physical systems.

The second major part of this article dealt with flows on manifolds, specifically Hamiltonian ones. We
started with the continuity equation for the probability density under the flow action and continued by showing
the existence of an invariant measure on energy leafs, the so called microcanonical distribution. Subsequently,
we examined the translation group on the torus Tn, and outlined a characterization of its ergodicity. It turned
out, that in the later case, the Lebesgue measure was actually the only invariant measure on the torus, im-
plying the strict-ergodicity of the flow in the non-resonant case. Through the Liouville theorem for integrable
systems, a connection from the torus-action to a wide class of Hamiltonian systems was presented, securing the
ergodic behavior of these systems on certain flow-invariant tori, typically preserved even under small, non-linear
perturbations!

In the final section we considered one of the standard models encountered in ergodic theory, the so called
billiards. After demonstrating the existence of an invariant measure and determining the mean free path of a
general billiard, we paradigmatically dedicated the last few pages to the ellipse-billiards, actually demonstrating
its non-ergodicity. More on billiards can be found in [24].
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A Appendix

A.1 Proof of Birkhoff’s ergodic theorem
A.1.1 Maximal ergodic theorem

Let (M,M, µ) be a measure space and T : L1(M,M, µ) → L1(M,M, µ) a positive51 contraction52. For any
f ∈ L1(M,M, µ) let

Snf :=

n−1∑
k=0

T kf , Anf :=
Snf

n
,

MS
n f := max {S1f, .., Snf} , MA

n f := max {A1f, .., Anf} ,

Pnf :=
{
MS
n f ≥ 0

}︸ ︷︷ ︸
{MA

n f≥0}

, P∞f :=
⋃
n∈N

Pnf .

Then ∫
Pnf

fdµ ≥ 0 ,

∫
P∞f

f dµ = 0 .

Proof: Following [1], by construction

(MS
n f)+ ≥MS

n f ≥ Snf

for k = 1, .., n and hence

f + T (MS
n f)+

T positive
≥ f + TSkf = Sk+1f .

Thus
f ≥ Skf − T (MS

n f)+ , k = 1, .., n

since the case k = 1 is trivial and so

f ≥ max
k=1,..,n

{Skf} − T (MS
n f)+ = MS

n f − T (MS
n f)+ .

Integrating over Pn yields∫
Pnf

f dµ ≥
∫
Pnf

[
MS
n f − T (MS

n f)+
]
dµ

(MS
n f)
∣∣
Pnf
≥0

=

∫
Pnf

[
(MS

n f)+ − T (MS
n f)+

]
dµ

(MS
n f)+

∣∣
(Pnf)c

=0

=

∫
M

(MS
n f)+dµ−

∫
Pnf

T (MS
n f)+︸ ︷︷ ︸
≥0

dµ ≥
∫
M

(MS
n f)+dµ−

∫
M

T (MS
n f)+dµ

︸ ︷︷ ︸
≤

∫
M

(MS
n f)+dµ

since ‖T‖≤1
and T≥0

≥ 0 .

Further, since MS
n f ≤Mn+1f and thus Pnf ⊂ Pn+1f one has 1Pnf ≤ 1Pn+1f and so

1P∞f = 1⋃
n Pnf

= sup
n∈N
{1Pnf} = lim

n→∞
1Pnf (Pointwise) .

51An operator T : V →W between vector spaces with partial order, is positive (T ≥ 0) :⇔ T {v ∈ V : v ≥ 0} ⊂ {w ∈W : w ≥ 0}.
52A bounded, linear operator T : V → V in the normed vector space (V, ‖·‖) is called a contraction :⇔ ‖T‖ ≤ 1 .
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Using the generalized Lemma of Fatou we can carry out the limit∫
P∞f

f dµ =

∫
M

f · 1P∞f dµ =

∫
M

lim
n→∞

(f · 1Pnf )︸ ︷︷ ︸
lim sup
n→∞

(f ·1Pnf )

dµ
Fatou
≥ lim sup

n→∞

∫
M

f · 1Pnf dµ︸ ︷︷ ︸∫
Pnf

f dµ≥0

≥ 0 .

A.1.2 Corollary: Maximal ergodic inequality

Let (M,M, µ) be a σ-finite measure space53 and T : L1(M,M, µ)→ L1(M,M, µ) the operator induced by the
measure preserving map τ : M →M . Then the inequality

µ
({
MA
n f ≥ α

})
≤ ‖f‖1

α
(A.1.2.1)

holds for any real valued f ∈ L1 and α > 0.

Proof: We shall outline the proof developed in [1]. Let

Pn,B :=
{
MA
n (f − α · 1B) ≥ 0

}
for any finite measurable set B ⊂

{
MA
n f ≥ α

}
. Because T is positive (since Th = h ◦ τ ≥ 0 for h ≥ 0) and a

contraction (to be precise, an isometry), it follows from the maximal ergodic theorem (3.2.1):∫
Pn,B

∈L1︷ ︸︸ ︷
(f − α · 1B) dµ ≥ 0 . (A.1.2.2)

But for x ∈ B one has Akf(x) ≥ α for some k ≤ n, which implies

Skf(x) ≥ kα = Sk(α) ⇒ Sk(f − α)︸ ︷︷ ︸
≤Sk(f−α·1B)

(x) ≥ 0 ⇒ x ∈ Pn,B .

It thus follows

‖f‖1 ≥
∫

Pn,B

|f | dµ ≥
∫

Pn,B

f dµ

(A.1.2.2)
µ(B)<∞
≥ α ·

∫
Pn,B

1B

︸ ︷︷ ︸
µ(B)
since

A⊂Pn,B

dµ = α · µ (B) .

Now let ⋃
n∈N

Un = M , µ(Un) <∞

for some {Un}n∈N ⊂M (possible, since (M,M, µ) is σ-finite). Then

{
MA
n f ≥ α

}
=
{
MA
n f ≥ α

}
∩M =

⋃
n∈N

{
MA
n f ≥ α

}
∩
(

n⋃
k=1

Uk

)
︸ ︷︷ ︸

monotonically
increasing
with n

,

which implies

α · µ
({
MA
n f ≥ α

})
= lim
n→∞

α · µ
[{
MA
n f ≥ α

}
∩
(

n⋃
k=1

Uk

)]
︸ ︷︷ ︸

≤‖f‖1

≤ ‖f‖1 .

53A measure space (M,M, µ) is σ-finite :⇔ ∃ U1, U2, .. ∈M :
⋃
n∈N

Un = M ∧ µ(Un) <∞ .
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A.1.3 Birkhoff-Khinchin Ergodic Theorem

Let (M,M, µ) be a finite measure space, τ : M → M measure preserving and f ∈ L1 (real or complex). Then
for almost all x ∈M the averages

Anf(x) :=
1

n

n−1∑
k=0

f ◦ τk(x)

converge pointwise to some τ -invariant f ∈ L1 with
∥∥f∥∥

1
≤ ‖f‖1. For each τ -invariant A ∈M:∫

A

f dµ =

∫
A

f dµ .

Proof: We shall follow the outline given in [1].

• We first consider a real valued f ∈ L1. From

An+1f =
f

(n+ 1)
+

n

n+ 1
(Anf) ◦ τ

follows

lim sup
n→∞

Anf(x) = lim
n→∞

sup
k+1≥n

[
f(x)

(k + 1)
+

k

k + 1
(Akfτ)(x)

]

= lim
n→∞

sup
k+1≥n

(Akfτ)(x) = lim sup
n→∞

(Anfτ)(x) ,

in other words, fu := lim sup
n→∞

Anf is τ -invariant. Same goes for f l := lim inf
n→∞

Anf .

• Now consider the τ -invariant set {fu > β} for β > 0. Then, for x ∈ {fu > β} one finds an n ∈ N such
that Anf(x) ≥ β and thus MA

n f(x) ≥ β. In other words:

{fu > β} ⊂
⋃
n∈N

{
MA
n f ≥ β

}
,

which by the maximal inequality corollary (3.2.2) implies

µ ({fu > β}) ≤ µ
( ⋃
n∈N

{
MA
n f ≥ β

}︸ ︷︷ ︸
monotonically
increasing

in n

)
= lim
n→∞

µ
({
MA
n f ≥ β

})︸ ︷︷ ︸
≤ ‖f‖1β

≤ ‖f‖1
β

⇒ µ ({fu =∞})
∀ β>0

≤ µ ({fu > β}) ≤ ‖f‖1
β

β→∞
=⇒ µ ({fu =∞}) = 0 .

With
µ
({
f l < α

})
= µ

(
{lim sup
n→∞

An(−f) > −α}
)
≤ ‖f‖1|α|

for α < 0, one in a similar way obtains f l > −∞ almost everywhere as well.

• Suppose Anf does not converge almost everywhere. Then

0 < µ
({
f l 6= fu

})
= µ

( ⋃
q∈Q+

{
f l + q < fu

})
=

countable sum︷ ︸︸ ︷∑
q∈Q+

µ
({
f l + q < fu

})

⇒ ∃ α < β ∈ Q : µ
( {
f l < α < β < fu

}︸ ︷︷ ︸
B

)
> 0 .
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Since either α < 0 or β > 0, by above results µ(B) <∞. The function f ′ := (f − β) · 1B has the property

f ′ ◦ τk
∣∣
Bc
≡ 0 ∀ k ≥ 0 ∧ B = {x | ∃ n ≥ 1 : Snf

′ > 0}

(since B is τ -invariant) which implies P∞f ′ = B (see 3.2.1) and thus∫
B

(f − β) dµ =

∫
P∞f ′

f ′ dµ
(3.2.1)

≥ 0
µ(B)<∞

=⇒ βµ(B) ≤
∫
B

f dµ .

In a similar way, using f ′′ := (α− 1) · 1B one gets∫
B

f dµ ≤ αµ(B) ,

which is a contradiction to α < β!

• By construction is f τ -invariant a.e.. Since there exists a τ -invariant f
′
such that f

′
= f a.e.[3], we may

w.l.o.g. assume f τ -invariant everywhere.

• To be shown is the inequality
∥∥f∥∥

1
≤ ‖f‖1. W.l.o.g. assume f ≥ 0. In any other case

∥∥f∥∥
1

=

∫
M

|f+ − f−| dµ =

∫
M

[
|f+|+ |f−|

]
dµ = ‖f+‖1︸ ︷︷ ︸

‖f+‖

+ ‖f−‖1︸ ︷︷ ︸
‖f−‖1

≤
∥∥f+

∥∥
1

+
∥∥f−∥∥

1
= ‖f‖1 .

Indeed, according to Fatou∫
M

f dµ =

∫
M

lim inf
n→∞

Anf dµ
Fatou
≤ lim inf

n→∞

∫
M

Anf dµ

= lim inf
n→∞

1

n

∫
M

f dµ+ · · ·+
∫
M

f ◦ τn−1 dµ

 =

∫
M

f dµ

since
∫
M

f ◦ τk dµ =
∫
M

f dµ (see eq. A.1.3.1 below).

• We now show
∫
A

f dµ =
∫
A

f dµ for any τ -invariant A ∈M. Note that

∫
A

fτ dµ =

∫
τ(A)

f dµτ

µτ=µ
τ(A)=A(mod0)

=

∫
A

f dµ (A.1.3.1)

since τ(A) ⊂ A and

µ(A \ τ(A))
µ(τ(A))<∞

= µ(A)− µ(τ(A))
µτ=µ

= µ(A)− µ
[
τ−1 (τ(A))︸ ︷︷ ︸

A
since

τ(A)⊂A

]
= 0 .

Hence ∫
A

Anf dµ =

∫
A

f dµ , n ∈ N . (A.1.3.2)
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By the decomposition f = f+ − f− we assume f ≥ 0. For any ε > 0 we can find a c ≥ 0 such that
gε = f −max {f, c} has norm ‖gε‖1 < ε. Thus∫

{Anf≥c}∩A

Anf dµ =

∫
A

(Anf − c)+dµ ≤
∫
A

(Anf −An max {f, c})+︸ ︷︷ ︸
(Angε)+

dµ
gε≥0
=

∫
A

Angε dµ

︸ ︷︷ ︸∫
A

gεdµ

< ε ,

in other words, {Anf}n∈N is uniformly integrable (over A). As a µ-almost everywhere (pointwise) con-
verging sequence it therefore converges in L1-norm as well, which together with eq. A.1.3.2 implies∫

A

f dµ =

∫
A

f dµ . (A.1.3.3)

• Now consider the complex case f = fr + ifi. Since Anf = Anfr + iAnfi, the a.e. convergence of Anfr
and Anfi implies the a.e. convergence of Anf and furthermore the validity of eq. A.1.3.3. Moreover∣∣f ∣∣ = | lim

n→∞
Anf | = lim

n→∞
|Anf | ≤ lim

n→∞
An |f | = |f | ⇒

∥∥f∥∥
1
≤
∫
M

|f | dµ =

∫
M

|f | dµ = ‖f‖1 .

A.2 General topology & geometry
A.2.1 Lemma about continuous functions

Let M be a topological space, B ⊂M dense in M and f : M → C continuous. Then:

1. If for some ε ≥ 0 and any x, y ∈ B we have |f(x)− f(y)| ≤ ε, then for all x̃, ỹ ∈M we have |f(x̃)− f(ỹ)| ≤ ε.

2. If f is constant on B, then it is constant everywhere.

Proof:

1. W.l.o.g. let f be real and suppose |f(x1)− f(x2)| = ε︸︷︷︸
≥0

+ δ︸︷︷︸
>0

for some x1, x2 ∈ M . Then, since f is

continuous, there exist open sets U1︸︷︷︸
3x1

, U2︸︷︷︸
3x2

such that f(Ui) ⊂ Boδ
2

(f(xi)). But as B is dense in M , there

exist points yi ∈ Ui ∩ B, i = 1, 2, hence

ε+ δ = |f(x1)− f(x2)| ≤ |f(x1)− f(y1)|︸ ︷︷ ︸
< δ

2

+ |f(y1)− f(y2)|+ |f(y2)− f(x2)|︸ ︷︷ ︸
< δ

2

.

But this implies
|f(y1)− f(y2)| > ε .

The statement is proved.

2. Follows from statement 1. by setting ε = 0.
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A.2.2 Lemma: Induced volume forms on leafs

Let (M, g) be a n-dimensional Riemannian manifold, with the standard volume-form

V =
√

det (gij) · dx1 ∧ · · · ∧ dxn .

Let H : M → R be some C1 function, such that dH 6= 0 on M . Then g induces on every leaf Lh := {H = h} a
volume form V h, such that

Vx =
dHx ∧ V H(x)

x√
g̃(dH, dH)

,

whereas g̃ is the contravariant54 of the metric g.

Note: Identifying volume-forms with measures admits an equivalent formulation: Each leaf Lh is admits the
measure

µh(Lh ∩A) :=

∫
Lh∩A

V h√
g̃(dH, dH)

such that
µ(A) :=

∫
A

V =

∫
R

µh(Lh ∩A) dh .

Proof: W.l.o.g. we may choose new coordinates H, y2, .., yn (with same orientation), such that g̃(dH, dyi) = 0.
This is always possible, since g̃ is symmetric and positive definite. Then g̃ induces on Lh the metric g̃h with
components g̃hij = g̃(dyi, dyj) since dyi are 1-forms on TLh. Thus in these new coordinates:

1

det (gij)
= det (g̃ij) = det

(
g̃(dH, dH) 0

0 g̃(dyi, dyj)

)
= g̃(dH, dH) · det

(
g̃hij
)

=
g̃(dH, dH)

det
(
ghij
) ,

which implies

dV =
√

det (gij) · dH ∧ dy2 ∧ · · · ∧ dyn =
dH√

g̃(dH, dH)
∧
√

det
(
ghij
)
dy2 ∧ · · · ∧ dyn︸ ︷︷ ︸
V h

.

A.2.3 Lemma about reflections in ellipses

Let Ec :=
{
q ∈ R2 : d(q, F1) + d(q, F2) ≤ c

}
be an ellipse and Hc :=

{
q ∈ R2 : d(q, F1)− d(q, F2) ≤ c

}
a hyper-

bola in R2 with foci F1, F2. Then:

1. For any point q ∈ ∂Ec the line segments F1q and F2q form equal angles with the tangent Tq := Tq∂Ec to the
ellipse at the point q.

2. The same holds for any point q ∈ ∂Hc.
54We define: g̃(a, b) := g(J−1a, J−1b), with the isomorphism J mapping vectors to 1-forms: Jx := g(x, ·). Note that

(g̃(dxi, dxj)) = (g(∂xi , ∂xj ))−1 .

See also [11].
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Figure 31: On angles between tangents and rays originat-
ing in foci of ellipses and hyperbolas.

Proof: We reproduce the proof found in [3].

1. Consider the point F ′2 symmetric to F2 with respect to Tq. Then d(F1, q) + d(q, F ′2) = d(F1, q) + d(q, F2) = c

while for all other p ∈ Tq we have d(F1, p) + d(p, F ′2) > c. Thus q is the intersection of the straight line F1F ′2
which implies what was to be shown.

2. Reflecting the focus F2 at Tq allows for similar arguments as in 1.

A.3 Measure theory
A.3.1 Corollary to the Poincaré recurrence theorem

Let (M,M, µ) be a finite (non-trivial) measure space, τ : M → M measure preserving and f : M → R∗ such
that f > 0 a.e. Then for almost all x ∈M we have

∞∑
n=1

f(τnx) =∞ .

Proof: Consider the sequence of sets An :=
{
f > 1

n

}
. Since almost every point x ∈ An returns to An infinitely

often, and ⋃
n∈N

An = {f > 0} = M(mod0) ,

we have that a.e. point x ∈M visits some Anx infinitely often. This proves what was to be shown.

A.3.2 Lemma: Characterization of measure preserving maps

Let (M,M, µ) be a measure space and τ : M →M . Then the following statements are equivalent:

1. τ is measure preserving.

2. For any measurable function f : M → C∗: ∫
M

f ◦ τ dµ =

∫
M

f dµ .

As a special case:
‖f ◦ τ‖p = ‖f‖ ∀ f ∈ Lp, 0 < p <∞ .
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3. In case of µ finite: For any bounded, Lp-integrable (∀ 0 < p <∞) function f : M → R:∫
M

f ◦ τ dµ =

∫
M

f dµ .

4. If M is metrizable and compact,M the Borel-σ-algebra of M and τ continuous:∫
M

f ◦ τ dµ =

∫
M

f dµ

for all f ∈ C(M).

Proof:

1→ 2: Since τ−1(M) = M : ∫
M

f ◦ τ dµ =

∫
τ−1(M)

f ◦ τ dµ =

∫
M

f dµτ
µ=µτ

=

∫
M

f dµ .

2→ 1: For A ∈M set f := 1A:

µ
(
τ−1(A)

)
=

∫
M

1τ−1(A) dµ =

∫
M

1A ◦ τ dµ =

∫
M

1A dµ = µ(A) .

2→ 3: Trivial.

3→ 1: Same as 2→ 1 since 1A is bounded and Lp integrable ∀ 0 < p <∞.

1→ 4: Trivial.

4→ 1: Let µ(f) = µτ (f) for f ∈ C(M). Then by the Frigyes Riesz representation theorem µ = µτ .

A.3.3 Lemma about invariant sets

Let (M,M, µ) be a finite measure space, τ : M →M measure preserving and A ∈M so that

τ−1(A) ⊂ A .

Then there exists a τ -invariant set Ã ∈M so that A = Ã(mod0).[3]

Proof: Set
Ã :=

⋂
n∈N0

(τn)−1(A) .

Then by construction τ(Ã) ⊂ Ã. Furthermore, for x ∈ Ãc, that is τnx /∈ A for some n ∈ N0: τn−1(τx) /∈ A in
case n ≥ 1 and τx /∈ A in case n = 0, which implies τx ∈ Ac. Thus Ã is τ -invariant, and since Ã ⊂ A:

µ
(
A4Ã

)
= µ

[
A \

⋂
n∈N0

(τn)−1(A)

]
= µ

[ ⋃
n∈N0

A \ (τn)−1(A)

]
≤
∞∑
n=0

[
µ(A)− µ

[
(τn)−1(A)

] ]
︸ ︷︷ ︸

0
since τ measure preserving

= 0 .
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A.3.4 Lemma: Topological aspects of measure families

Let (M,M) be a measurable space, (τg)g∈G a G-semi-flow, M the set of all probability measures and M ((τg))
the set of all (τg)-invariant probability measures in (M,M). Then:

1. The sets M and M ((τg)) are convex.

2. Every extreme point of µ ∈ M ((τg)) is ergodic.

3. If (τg) is a flow, then every ergodic probability measure is extreme in M((τg)).

4. If M is compact, metrizable andM = B(M), then the set M is sequentially compact with respect to weak*
convergence of measures.

5. If M is compact, metrizable, M = B(M) and every τg : M → M continuous, then the set M ((τg)) is
sequentially compact with respect to weak* convergence of measures.

Note: The weak* convergence topology on M can indeed be attributed to a metric d(·, ·):

d(µ, ν) :=

∞∑
j=1

1

2j

∣∣∣∣ ∫
M

fj dµ−
∫
M

fj dν

∣∣∣∣
for some dense, countable family of functions {fi}i∈N ⊂ C(M) in the normed space (C(M), ‖·‖∞) [21]. Thus
sequential compactness is equivalent to topological compactness. See also [17].

Proof: We shall here generalize the proof found in [17].

1. Let µ0, µ1 ∈ M and t ∈ [0, 1]. Then clearly µt := t · µ1 + (1− t) · µ0 is a probability measure. If furthermore
µ0, µ1 are (τg)-invariant, then so is µt.

2. Suppose µ ∈ M ((τg)) is not ergodic. Choose some (τg)-invariant A ∈ M such that 0 < µ(A) < 1. Then the
(τg)-invariant probability measures

µA(B) :=
µ(A ∩B)

µ(A)
, µAc(B) :=

µ(Ac ∩B)

µ(Ac)

satisfy
µ = µ(A)︸ ︷︷ ︸

∈(0,1)

·µA + (1− µ(A)) · µAc ,

hence µ is not extremal in M ((τg)).
Assume now µ = t · µ1 + (1− t) · µ2 is ergodic with t ∈ [0, 1], µi ∈ M((τg)). Now suppose t ∈ (0, 1), then for
any µ-nullset we have µ1(A) = µ2(A) = 0. Thus by theorem 3.3.4, µ = µ1 or µ = µ2.

3. • Let (µn)n∈N ⊂ M be a sequence of probability measures and (fi)i∈N ⊂ C(M) a countable family of
dense functions in (C(M), ‖·‖∞) (recall that the normed space (C(M), ‖·‖∞) is separable). Then every
sequence (µn(fi))n of complex numbers is bounded, since |µn(fi)| ≤ ‖fi‖∞. By a diagonal argument55
and the Bolzano-Weierstraß theorem for (C, |·|), there exists some sub-sequence (µnk)k such that µnk(fi)
is convergent (in k) for every fi.

• Actually, (µnk)k(f) converges for all f ∈ C(M), since: For any ε > 0 we can chose some fi so that
‖f − fi‖∞ < ε

3 and N ∈ N such that

|µnk(fi)− µnr (fi)| <
ε

3
∀ k, r ≥ N .

Hence:

|µnk(f)− µnr (f)| ≤ |µnk(f)− µnk(fi)|︸ ︷︷ ︸
≤‖f−fi‖∞<

ε
3

+ |µnk(fi)− µnr (fi)|︸ ︷︷ ︸
< ε

3

+ |µnr (fi)− µnr (f)|︸ ︷︷ ︸
≤‖fi−f‖∞<

ε
3

< ε ∀ k, r ≥ N ,

that is, µnk is Cauchy in (C, |·|) and thus convergent.

55Construct a family of sub-sequences
{

(µnm
k

)k

}
m
, (µ

nm+1
k

)k ⊂ (µnm
k

)k, such that (µnm
k

)k(fi) is convergent (in k) for 1 ≤ i ≤
m. Then the diagonal subsequence (µnk

k
)k(fi) converges for all i.
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• We now set µ(f) := lim
k→∞

µnk(f) for f ∈ C(M). Obviously the functional µ is linear, positive and normed

l(1) = 1. By the Riesz representation theorem it corresponds to a probability Borel measure µ, such
that ∫

M

f dµ
∀ f∈C

= µ(f) = lim
n→∞

∫
M

f dµnk ,

that is, µnk
n→∞−→
weak*

µ.

4. Since M ((τg)) ⊂ M and M is sequentially compact, it suffices to show that M ((τg)) is sequentially closed with
respect to weak* convergence. Let {µn}n∈N be a sequence of measures in M ((τg)) such that µn

n→∞−→
weak*

µ for

some measure µ. Since µn are probability measures, so is µ, since
∫
M

1 dµn = 1 ∀ n. Now let f : M → C be

continuous, then

µn(f ◦ τg︸ ︷︷ ︸
∈C(M)

) =

∫
M

f ◦ τg dµn n→∞−→
∫
M

f ◦ τg dµ = µ(f ◦ τg) = µτg (f)

= µn(f)
n→∞−→ µ(f) .

Thus, µ(f) = µτg (f) for f ∈ C(M) by uniqueness of the limes. By the Frigyes Riesz representation theorem
about metrizable, compact spaces, we have µ = µτg .

A.3.5 Lemma about mixing systems

Let (M,M, µ) be a probability space, (τg)g∈G an ordered, measure preserving G-semi-flow and Φ ⊂ L2 some
complete56 system of functions in L2. If for any f1, f2 ∈ Φ the relation

lim
g→∞

∫
M

f∗1 · (f2 ◦ τg) dµ =

∫
M

f∗1 dµ ·
∫
M

f2 dµ (A.3.5.1)

holds, then (τg) is mixing, that is, eq. A.3.5.1 holds for all f1, f2 ∈ L2.

Proof: We shall generalize the proof found in [17], chapter 4. Since both sides of the above equation are linear
in f2 and anti-linear in f1, it holds for some dense subset Ψ := span(Φ) of L2. Now let f1, f2 ∈ L2 and ε > 0

56A subset Φ ⊂ H of a Hilbert-space (H, 〈·, ·〉) is called complete, if the set span(Φ) of finite, linear combinations of vectors in Φ
is dense in H.
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and choose f̃i ∈ Ψ such that ‖f̃i − fi‖2 < ε. Then by the Schwarz inequality∣∣∣∣ ∫
M

f∗1 · (f2τ
g) dµ−

∫
M

f∗1 dµ ·
∫
M

f2 dµ

∣∣∣∣

=

∣∣∣∣ ∫
M

(f1 − f̃1)∗ · (f2τ
g)dµ+

∫
M

f̃∗1 · (f2τ
g − f̃2τ

g)dµ+

∫
M

f̃∗1 · (f̃2τ
g)dµ−

∫
M

f̃∗1 dµ ·
∫
M

f̃2 dµ

+

∫
M

(f̃1 − f1)∗dµ ·
∫
M

f̃2dµ+

∫
M

f∗1 dµ ·
∫
M

(f̃2 − f2)dµ

∣∣∣∣
Schwarz
≤ ‖f1 − f̃1‖2 · ‖f2 ◦ τg‖2︸ ︷︷ ︸

‖f2‖2
by

(A.3.2)

+ ‖f̃1‖2︸ ︷︷ ︸
≤‖f̃1−f1‖2

+‖f1‖2
Minkowski

· ‖(f2 − f̃2) ◦ τg‖2︸ ︷︷ ︸
‖f2−f̃2‖

2
by

(A.3.2)

+

∣∣∣∣ ∫
M

f̃∗1 · (f̃2τ
g) dµ−

∫
M

f̃∗1 dµ ·
∫
M

f̃2 dµ

∣∣∣∣

+ ‖f1 − f̃1‖1︸ ︷︷ ︸
≤‖f1−f̃1‖2

Hölder
∧µ(M)=1

·
∣∣∣∣ ∫
M

f̃2 dµ

∣∣∣∣︸ ︷︷ ︸
≤‖f̃2‖1

≤‖f̃2−f2‖1+‖f2‖1

+ ‖f2 − f̃2‖1︸ ︷︷ ︸
≤‖f2−f̃2‖2

Hölder
∧µ(M)=1

·
∣∣∣∣ ∫
M

f∗1 dµ

∣∣∣∣︸ ︷︷ ︸
≤‖f1‖1

< ε · [‖f2‖2 + ε+ ‖f1‖2 + ε+ ‖f2‖1 + ‖f1‖1]︸ ︷︷ ︸
≤2[ε+‖f1‖2+‖f2‖2]=const<∞

+

∣∣∣∣ ∫
M

f̃∗1 · (f̃2τ
g) dµ−

∫
M

f̃∗1 dµ ·
∫
M

f̃2 dµ

∣∣∣∣︸ ︷︷ ︸
g→∞−→ 0

g→∞−→ ε · const .

Since ε > 0 was arbitrary small, eq. A.3.5.1 follows for f1, f2.

A.3.6 Choquet theorem

Let C be a metrizable, convex, compact set in a locally convex topological vector space and x ∈ C. Then there
exists a probability measure µ supported57 on the set of extrema58 ex(C), such that

f(x) =

∫
ex(C)

f(z) dµ(z) .

for any affine function f on C [17].

57The support suppµ of a measure µ on a topological space (M,B(M)) is defined as:

supp(µ) := {x ∈M | x ∈ U ∈ O(M) ⇒ µ(U) > 0} .

We say µ is supported on some set A ∈ B(M), if suppµ ⊂ A. Note that suppµ is closed, and for every A ⊂ (suppµ)c we have
µ(A) = 0.

58A point x ∈ C of a convex set C is called extreme, if x = t ·x1 + (1− t) ·x2 with x1, x2 ∈ C, t ∈ [0, 1] implies x = x1 or x = x2.
We write ex(C) for the set of extreme points of C.
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